We think you are located in South Africa. Is this correct?

Solving Quadratic Equations

4.3 Solving quadratic equations (EMA36)

A quadratic equation is an equation where the exponent of the variable is at most \(\text{2}\). The following are examples of quadratic equations:

\begin{align*} 2{x}^{2} + 2x & = 1 \\ 3{x}^{2} + 2x - 1 & = 0 \\ 0 & = -2{x}^{2} + 4x - 2 \end{align*}

Quadratic equations differ from linear equations in that a linear equation has only one solution, while a quadratic equation has at most two solutions. There are some special situations, however, in which a quadratic equation has either one solution or no solutions.

We solve quadratic equations using factorisation. For example, in order to solve \(2{x}^{2} -x - 3 = 0\), we need to write it in its equivalent factorised form as \(\left(x + 1\right)\left(2x - 3\right) = 0\). Note that if \(a \times b = 0\) then \(a = 0\) or \(b = 0\).

The following video shows an example of solving a quadratic equation by factorisation.

Video: 2FBM

Method for solving quadratic equations (EMA37)

  1. Rewrite the equation in the required form, \(a{x}^{2} + bx + c = 0\).

  2. Divide the entire equation by any common factor of the coefficients to obtain an equation of the form \(a{x}^{2} + bx + c = 0\), where \(a\), \(b\) and \(c\) have no common factors. For example \(2{x}^{2} + 4x + 2 = 0\) can be written as \({x}^{2} + 2x + 1 = 0\).

  3. Factorise \(a{x}^{2} + bx + c = 0\) to be of the form \(\left(rx + s\right)\left(ux + v\right) = 0\).

  4. The two solutions are \(\left(rx + s\right) = 0\) or \(\left(ux + v\right) = 0\), so \(x= -\dfrac{s}{r}\) or \(x = -\dfrac{v}{u}\), respectively.

  5. Check the answer by substituting it back into the original equation.

Worked example 4: Solving quadratic equations

Solve for \(x\):

\[3{x}^{2} + 2x - 1 = 0\]

The equation is already in the required form, \(a{x}^{2} + bx + c = 0\)

Factorise

\[\left(x + 1\right)\left(3x - 1\right) = 0\]

Solve for both factors

We have

\begin{align*} x + 1 & = 0 \\ \therefore x & = -1 \end{align*}

OR

\begin{align*} 3x - 1 & = 0 \\ \therefore x & = \frac{1}{3} \end{align*}

Check both answers by substituting back into the original equation

Write the final answer

The solution to \(3{x}^{2} + 2x - 1 = 0\) is \(x = -1\) or \(x = \frac{1}{3}\).

Worked example 5: Solving quadratic equations

Find the roots:

\[0 = -2{x}^{2} + 4x - 2\]

The equation is already in the required form, \(a{x}^{2} + bx + c = 0\)

Divide the equation by common factor \(-\text{2}\)

\begin{align*} -2{x}^{2} + 4x - 2 & = 0 \\ {x}^{2} - 2x + 1 & = 0 \end{align*}

Factorise

\begin{align*} \left(x - 1\right)\left(x - 1\right) & = 0 \\ {\left(x - 1\right)}^{2} & = 0 \end{align*}

The quadratic is a perfect square

This is an example of a special situation in which there is only one solution to the quadratic equation because both factors are the same.

\begin{align*} x - 1 & = 0 \\ \therefore x & = 1 \end{align*}

Check the answer by substituting back into the original equation

Write final answer

The solution to \(0 = -2{x}^{2} + 4x - 2\) is \(x = 1\).

Success in Maths and Science unlocks opportunities

Sign up to get a head start on bursary and career opportunities. Use Siyavula Practice to get the best marks possible.

Sign up to unlock your future

Exercise 4.2

Write the following in standard form

\((r + 4) (5 r - 4) = -\text{16}\)

\begin{align*} (r + 4) (5 r - 4) & = -\text{16} \\ \text{5} {r}^2 -\text{4} r \text{+20} r -\text{16} + \text{16} &= \text{0}\\ \text{5} {r}^2 -\text{4} r \text{+20} r -\text{16} + \text{16} &= \text{0}\\ 5 r^{2} + 16 r & = \text{0} \end{align*}

\((3 r - 8) (2 r - 3) = -\text{15}\)

\begin{align*} (3 r - 8) (2 r - 3) & = -\text{15} \\ \text{6} {r}^2 -\text{9} r -\text{16} r \text{+24} + \text{15} &= \text{0}\\ \text{6} {r}^2 -\text{9} r -\text{16} r \text{+24} + \text{15} &= \text{0}\\ 6 r^{2} - 25 r + 39 & = \text{0} \end{align*}

\((d + 5) (2 d + 5) = \text{8}\)

\begin{align*} (d + 5) (2 d + 5) & = \text{8} \\ \text{2} {d}^2 \text{+5} d \text{+10} d \text{+25} - \text{8} &= \text{0}\\ \text{2} {d}^2 \text{+5} d \text{+10} d \text{+25} - \text{8} &= \text{0}\\ 2 d^{2} + 15 d + 17 & = \text{0} \end{align*}

Solve the following equations:

\(x^{2} +2x -15 = 0\)

\begin{align*} x^{2} +2x -15 &= 0 \\ (x -3)(x +5) &=0 \\ \therefore x = -5 & \text{ or } x = 3 \end{align*}

\(p^{2} -7p -18 = 0\)

\begin{align*} p^{2} -7p -18 &= 0 \\ (p -9)(p +2) =&0 \\ \therefore p = -2 &\text{ or } p = 9 \end{align*}

\(9x^{2} - 6x - 8 = 0\)

\begin{align*} 9x^{2} - 6x - 8 & = 0 \\ (3x + 2)(3x - 4) & = 0 \\ 3x + 2 & = 0 \\ x & = -\frac{2}{3} \\ \text{or} & \\ 3x - 4 & = 0 \\ x & = \frac{4}{3} \\ \therefore x = -\frac{2}{3} & \text{ or } x = \frac{4}{3} \end{align*}

\(5x^{2} + 21x - 54 = 0\)

\begin{align*} 5x^{2} + 21x - 54 & = 0 \\ (5x - 9)(x + 6) & = 0 \\ 5x - 9 & = 0 \\ x & = \frac{9}{5} \\ \text{or} & \\ x + 6 & = 0 \\ x & = -6 \\ \therefore x = \frac{9}{5} & \text{ or } x = -6 \end{align*}

\(4 z^{2} + 12 z + 8 = 0\)

\begin{align*} 4 z^{2} + 12 z + 8 &= 0\\ z^{2} + 3 z + 2 &= 0 \\ \left(z + 1\right) \left(z + 2\right)&= 0 \\ z = -2 &\text{ or } z = -1 \end{align*}

\(- b^{2} + 7 b - 12 = 0\)

\begin{align*} - b^{2} + 7 b - 12 &= 0 \\ b^{2} - 7 b + 12 &= 0 \\ \left(b - 4\right) \left(b - 3\right) &= 0 \\ b = 3 &\text{ or } b = 4 \end{align*}

\(- 3 a^{2} + 27 a - 54 = 0\)

\begin{align*} - 3 a^{2} + 27 a - 54 &= 0 \\ a^{2} - 9 a + 18 &= 0 \\ \left(a - 6\right) \left(a - 3\right) &= 0 \\ a = 3 &\text{ or } a = 6. \end{align*}

\(4y^{2} - 9 = 0\)

\begin{align*} 4y^{2} - 9 & = 0 \\ (2y - 3)(2y + 3) & = 0 \\ 2y - 3 & = 0 \\ y & = \frac{3}{2} \\ \text{or} & \\ 2y + 3 & = 0 \\ y & = -\frac{3}{2} \\ \therefore y = \frac{3}{2} & \text{ or } y = -\frac{3}{2} \end{align*}

\(4x^{2} + 16x - 9 = 0\)

\begin{align*} 4x^{2} + 16x - 9 & = 0 \\ (2x - 1)(2x + 9) & = 0 \\ 2x - 1 & = 0 \\ x & = \frac{1}{2} \\ \text{or} & \\ 2x + 9 & = 0 \\ y & = -\frac{9}{2} \\ \therefore x = \frac{1}{2} & \text{ or } x = -\frac{9}{2} \end{align*}

\(4x^{2} - 12x = -9\)

\begin{align*} 4x^{2} - 12x & = -9 \\ 4x^{2} - 12x + 9 & = 0 \\ (2x - 3)(2x - 3) & = 0 \\ 2x - 3 & = 0 \\ x & = \frac{3}{2} \end{align*}

\(20m + 25m^{2} = 0\)

\begin{align*} 20m + 25m^{2} & = 0 \\ 5m(4 + 5m) & = 0 \\ 5m & = 0 \\ m & = 0 \\ \text{ or } & \\ 4 + 5m & = 0 \\ m & = -\frac{4}{5} \\ \therefore m = 0 & \text{ or } m = -\frac{4}{5} \end{align*}

\(2x^{2} - 5x - 12 = 0\)

\begin{align*} 2x^{2} - 5x - 12 & = 0 \\ (2x + 3)(x - 4) & = 0 \\ 2x + 3 & = 0 \\ x & = -\frac{3}{2} \\ \text{or} & \\ x - 4 & = 0 \\ x & = 4 \\ \therefore x = -\frac{3}{2} & \text{ or } x = 4 \end{align*}

\(-75x^{2} + 290x = 240\)

\begin{align*} -75x^{2} + 290x & = 240 \\ -75x^{2} + 290x - 240 & = 0 \\ -15x^{2} + 58x - 48 & = 0 \\ (5x - 6)(3x - 8) & = 0 \\ 5x - 6 & = 0 \\ x & = \frac{6}{5} \\ \text{or} & \\ 3x - 8 & = 0 \\ x & = \frac{8}{3} \\ \therefore x = \frac{6}{5} & \text{ or } x = \frac{8}{3} \end{align*}

\(2x = \frac{1}{3}x^{2} - 3x + 14\frac{2}{3}\)

\begin{align*} 2x & = \frac{1}{3}x^{2} - 3x + 14\frac{2}{3} \\ 6x & = x^{2} - 9x + 44 \\ x^{2} - 15x + 44 & = 0 \\ (x - 4)(x - 11) & = 0 \\ x - 4 & = 0 \\ x & = 4 \\ \text{or} & \\ x - 11 & = 0 \\ x & = 11 \\ \therefore x = 4 & \text{ or } x = 11 \end{align*}

\(x^{2} - 4x = -4\)

\begin{align*} x^{2} - 4x & = -4 \\ x^{2} - 4x + 4 & = 0 \\ (x - 2)(x - 2) & = 0 \\ x - 2 & = 0 \\ x & = 2 \end{align*}

\(-x^{2} + 4x - 6 = 4x^{2} - 14x + 3\)

\begin{align*} -x^{2} + 4x - 6 & = 4x^{2} - 14x + 3 \\ 5x^{2} - 18x + 9 & = 0 \\ (5x - 3)(x - 3) & = 0 \\ 5x - 3 & = 0 \\ x & = \frac{3}{5} \\ \text{or} & \\ x - 3 & = 0 \\ x & = 3 \\ \therefore x = \frac{3}{5} & \text{ or } x = 3 \end{align*}

\(t^{2} = 3t\)

\begin{align*} t^{2} & = 3t \\ t^{2} - 3t & = 0 \\ t(t - 3) & = 0 \\ t & = 0 \\ \text{or} & \\ t - 3 & = 0 \\ t & = 3 \\ \therefore t = 0 & \text{ or } t = 3 \end{align*}

\(x^{2} - 10x = -25\)

\begin{align*} x^{2} - 10x & = -25 \\ x^{2} - 10x + 25 & = 0 \\ (x - 5)(x - 5) & = 0 \\ x - 5 & = 0 \\ x & = 5 \end{align*}

\(x^{2} = 18\)

\begin{align*} x^{2} & = 18 \\ \therefore x = \sqrt{18} & \text{ or } x = -\sqrt{18} \end{align*}

\(p^{2} - 6p = 7\)

\begin{align*} p^{2} - 6p & = 7 \\ p^{2} - 6p - 7 & = 0 \\ (p - 7)(p + 1) & = 0 \\ p - 7 & = 0 \\ p & = 7 \\ \text{or} & \\ p + 1 & = 0 \\ p & = -1 \\ \therefore p = 7 & \text{ or } p = -1 \end{align*}

\(4x^{2} - 17x - 77 = 0\)

\begin{align*} 4x^{2} - 17x - 77 & = 0 \\ (4x + 11)(x - 7) & = 0 \\ 4x + 11 & = 0 \\ x & = -\frac{11}{4} \\ \text{or} & \\ x - 7 & = 0 \\ x & = 7 \\ \therefore x = -\frac{11}{4} & \text{ or } x = 7 \end{align*}

\(14x^{2} + 5x = 6\)

\begin{align*} 14x^{2} + 5x & = 6 \\ 14x^{2} + 5x - 6 & = 0 \\ (7x + 6)(2x - 1) & = 0 \\ 7x + 6 & = 0 \\ x & = -\frac{6}{7} \\ \text{or} & \\ 2x - 1 & = 0 \\ x & = \frac{1}{2} \\ \therefore x = -\frac{6}{7} & \text{ or } x = \frac{1}{2} \end{align*}

\(2x^{2} - 2x = 12\)

\begin{align*} 2x^{2} - 2x & = 12 \\ x^{2} - x - 6 & = 0 \\ (x - 3)(x + 2) & = 0 \\ x - 3 & = 0 \\ x & = 3 \\ \text{or} & \\ x + 2 & = 0 \\ x & = -2 \\ \therefore x = 3 & \text{ or } x = -2 \end{align*}
\((2a - 3)^2 - 16 = 0\)
\begin{align*} (2a - 3)^2 - 16 &= 0 \\ (2a - 3 + 4)(2a - 3 - 4) &= 0 \\ (2a + 1)(2a - 7)&= 0 \\ \therefore a = -\frac{1}{2} &\text{ or } a = \text{3,5} \end{align*}
\((x-6)^2 - 24 = 1\)
\begin{align*} (x-6)^2 - 24 &= 1 \\ (x-6)^2 - 25 &= 0 \\ (x- 6 - 5)(x- 6 + 5) &= 0\\ (x-11)(x-1) &= 0\\ \therefore x = 11 &\text{ or } x = 1 \end{align*}

Solve the following equations (note the restrictions that apply):

\(3y = \dfrac{54}{2y}\)

Note \(y \neq 0\)

\begin{align*} 3y &= \frac{54}{2y} \\ 3y^2 &= 27 \\ y^2 &= 9 \\ y^2 - 9 &= 0 \\ (y-3)(y+3) &= 0 \\ \therefore y = 3 &\text{ or } y = -3 \end{align*}
\(\dfrac{10z}{3} = 1 - \dfrac{1}{3z}\)

Note \(z \neq 0\)

\begin{align*} \frac{10z}{3} &= 1 - \frac{1}{3z} \\ 10z^2 &= 3z - 1 \\ 10z^2 - 3z + 1 &= 0 \\ (5z + 1)(2z - 1) &= 0 \\ \therefore z = -\frac{1}{5} &\text{ or } z = \frac{1}{2} \end{align*}
\(x + 2 = \dfrac{18}{x} -1\)

Note \(x \neq 0\)

\begin{align*} x + 2 &= \frac{18}{x} -1 \\ x^2 + 2x &= 18 - x \\ x^2 + 3x - 18 &= 0 \\ (x-3)(x+6) &= 0 \\ \therefore x = 3 &\text{ or } x = -6 \end{align*}
\(y - 3 = \dfrac{5}{4} - \dfrac{1}{y}\)

Note \(y \neq 0\)

\begin{align*} y - 3 &= \frac{5}{4} - \frac{1}{y} \\ 4y^2 - 12y &= 5y - 4 \\ 4y^2 -17y + 4 &= 0\\ (4y-1)(y-4)&= 0\\ \therefore y = \frac{1}{4} &\text{ or } y = 4 \end{align*}
\(\dfrac{1}{2}(b - 1) = \dfrac{1}{3}\left(\dfrac{2}{b} + 4\right)\)

Note \(b \neq 0\)

\begin{align*} \frac{1}{2}(b - 1) &= \frac{1}{3}\left(\frac{2}{b} + 4\right) \\ 3(b - 1) &= 2\left(\frac{2}{b} + 4\right) \\ 3b - 3 &= \frac{4}{b} + 8 \\ 3b^2 - 3b &= 4 + 8b \\ 3b^2 - 11b - 4 &= 0 \\ (3b + 1)(b - 4) &= \\ \therefore b = -\frac{1}{3}b &\text{ or } b = 4 \end{align*}
\(3(y + 1) = \dfrac{4}{y} + 2\)

Note \(y \neq 0\)

\begin{align*} 3(y + 1) &= \frac{4}{y} + 2 \\ 3y + 3 &= \frac{4}{y} + 2 \\ 3y^2 + 3y &= 4 + 2y \\ 3y^2 + y - 4 &= 0 \\ (3y + 4)(y-1) &= 0 \\ \therefore y = -\frac{4}{3} &\text{ or } y = 1 \end{align*}
\((x+1)^2 - 2(x+1) - 15 = 0\)
\begin{align*} (x+1)^2 - 2(x+1) - 15 &= 0 \\ ((x+1) - 5)((x+1) + 3) &= 0\\ (x-4)(x+4) &= 0 \\ \therefore x = 4 &\text{ or } x = -4 \end{align*}
\(z^4 - 1 = 0\)
\begin{align*} z^4 - 1 &= 0 \\ (z^2 - 1)(z^2 + 1) &= 0 \\ (z- 1)(z+1)(z^2 + 1) &= 0 \\ \therefore z = 1 &\text{ or } z = -1 \end{align*}

Note that \(z^{2} + 1\) has no real solutions.

\(b^4 - 13b^2 + 36 = 0\)
\begin{align*} b^4 - 13b^2 + 36 &= 0 \\ (b^2 - 4)(b^2 - 9) &= 0 \\ (b-2)(b+2)(b-3)(b+3) &= 0 \\ \therefore b = \pm 2 &\text{ or } b = \pm 3 \end{align*}

\(\dfrac{a + 1}{3a - 4} + \dfrac{9}{2a + 5} + \dfrac{2a + 3}{2a + 5} = 0\)

\begin{align*} \frac{a + 1}{3a - 4} + \frac{9}{2a + 5} + \frac{2a + 3}{2a + 5} & = 0 \\ \frac{(a + 1)(2a + 5) + 9(3a - 4) + (2a + 3)(3a - 4)}{(3a - 4)(2a + 5)} & = 0 \\ 2a^{2} + 7a + 5 + 27a - 36 + 6a^{2} + a - 12 & = 0 \\ 8a^{2} + 35a - 43 & = 0 \\ (8a + 43)(a - 1) & = 0 \\ 8a + 43 & = 0 \\ a & = -\frac{43}{8} \\ \text{or} & \\ a - 1 & = 0 \\ a & = 1 \\ \therefore a = -\frac{43}{8} & \text{ or } a = 1 \end{align*}
\(\dfrac{x^2 - 2x - 3}{x+1} = 0\)

Note \(x \neq -1\)

\begin{align*} \frac{x^2 - 2x - 3}{x+1} &= 0 \\ \frac{(x+1)(x-3)}{x+1} &= 0 \\ \therefore x &= 3 \end{align*}
\(x + 2 = \dfrac{6x -12}{x- 2}\)

Note \(x \neq 2\)

\begin{align*} x + 2 &= \frac{6x-12}{x- 2} \\ (x+2)(x-2) &= 6x - 12 \\ x^2 - 4 &= 6x - 12\\ x^2 - 6x + 8 & = 0 \\ (x - 2)(x - 4) & = 0 \\ \therefore x &= 4 \end{align*}
\(\dfrac{3(a^2+1) +10a}{3a + 1} = 1\)

Note \(a \neq -\frac{1}{3}\)

\begin{align*} \frac{3(a^2+1)+ 10a}{3a + 1} &= 1 \\ 3(a^2+1) + 10a &= 3a + 1 \\ 3a^2 + 3 + 10a - 3a - 1 &= 0 \\ 3a^2 + 7a + 2 &= 0 \\ (3a + 1)(a + 2) &= 0 \\ \therefore a &= -2 \end{align*}

\(\dfrac{3}{9a^{2} - 3a + 1} - \dfrac{3a + 4}{27a^{3} + 1} = \dfrac{1}{9a^{2} - 1}\)

\begin{align*} \frac{3}{9a^{2} - 3a + 1} - \frac{3a + 4}{27a^{3} + 1} & = \frac{1}{9a^{2} - 1} \\ \frac{3}{9a^{2} - 3a + 1} - \frac{3a + 4}{(3a + 1)(9a^{2} - 3a + 1)} & = \frac{1}{(3a - 1)(3a + 1)} \\ \frac{3(9a^{2} - 1) - (3a - 1)(3a + 4)}{(3a + 1)(3a - 1)(9a^{2} - 3a + 1)} & = \frac{9a^{2} - 3a + 1}{(3a - 1)(3a + 1)(9a^{2} - 3a + 1)} \\ 27a^{2} - 3 - 9a^{2} - 9a + 4 & = 9a^{2} - 3a + 1 \\ 9a^{2} - 6a & = 0 \\ 3a(3a - 2) & = 0 \\ 3a & = 0 \\ a & = 0 \\ \text{or} & \\ 3a - 2 & = 0 \\ a & = \frac{2}{3} \\ \therefore a = 0 & \text{ or } a = \frac{2}{3} \end{align*}