We think you are located in South Africa. Is this correct?

Reciprocal Ratios

Do you need more Practice?

Siyavula Practice gives you access to unlimited questions with answers that help you learn. Practise anywhere, anytime, and on any device!

Sign up to practise now

5.4 Reciprocal ratios (EMA3Q)

Each of the three trigonometric ratios has a reciprocal. The reciprocals: cosecant (cosec), secant (\(\sec\)) and cotangent (\(\cot\)), are defined as follows:

\begin{align*} \text{cosec } \theta & = \frac{1}{\sin\theta } \\ \sec\theta & = \frac{1}{\cos\theta } \\ \cot \theta & = \frac{1}{\tan\theta } \end{align*}

We can also define these reciprocals for any right-angled triangle:

\begin{align*} \text{cosec } \theta & = \frac{\text{hypotenuse}}{\text{opposite}} \\ \sec \theta & = \frac{\text{hypotenuse}}{\text{adjacent}} \\ \cot \theta & = \frac{\text{adjacent}}{\text{opposite}} \end{align*}

Note that:

\begin{align*} \sin \theta \times \text{cosec } \theta & = 1\\ \cos \theta \times \sec \theta & = 1\\ \tan \theta \times \cot \theta & = 1 \end{align*}

This video covers the three reciprocal ratios for \(\sin\), \(\cos\) and \(\tan\).

Video: 2FNV

You may see cosecant abbreviated as \(\csc\).