We think you are located in South Africa. Is this correct?

Reciprocal Ratios

Success in Maths and Science unlocks opportunities

Sign up to get a head start on bursary and career opportunities. Use Siyavula Practice to get the best marks possible.

Sign up to unlock your future

5.4 Reciprocal ratios (EMA3Q)

Each of the three trigonometric ratios has a reciprocal. The reciprocals: cosecant (cosec), secant (\(\sec\)) and cotangent (\(\cot\)), are defined as follows:

\begin{align*} \text{cosec } \theta & = \frac{1}{\sin\theta } \\ \sec\theta & = \frac{1}{\cos\theta } \\ \cot \theta & = \frac{1}{\tan\theta } \end{align*}

We can also define these reciprocals for any right-angled triangle:

\begin{align*} \text{cosec } \theta & = \frac{\text{hypotenuse}}{\text{opposite}} \\ \sec \theta & = \frac{\text{hypotenuse}}{\text{adjacent}} \\ \cot \theta & = \frac{\text{adjacent}}{\text{opposite}} \end{align*}

Note that:

\begin{align*} \sin \theta \times \text{cosec } \theta & = 1\\ \cos \theta \times \sec \theta & = 1\\ \tan \theta \times \cot \theta & = 1 \end{align*}

This video covers the three reciprocal ratios for \(\sin\), \(\cos\) and \(\tan\).

Video: 2FNV

You may see cosecant abbreviated as \(\csc\).