We think you are located in South Africa. Is this correct?

Summary

Test yourself now

High marks in maths are the key to your success and future plans. Test yourself and learn more on Siyavula Practice.

Sign up and test yourself

4.6 Summary (EMCGP)

Pythagorean Identities

Ratio Identities

\({\cos}^{2}\theta +{\sin}^{2}\theta =1\)

\(\tan\theta =\frac{\sin\theta }{\cos\theta }\)

\({\cos}^{2}\theta = 1 - {\sin}^{2}\theta\)

\(\frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}\)

\({\sin}^{2}\theta = 1 - {\cos}^{2}\theta\)

Special angle triangles

4d3e042a38f6b45a487871f8b3e98d4c.png4ff6073e65b92eef216921d212d131f8.png

θ

\(\text{0}\)°

\(\text{30}\)°

\(\text{45}\)°

\(\text{60}\)°

\(\text{90}\)°

\(\cos θ\)

\(\text{1}\)

\(\frac{\sqrt{3}}{2}\)

\(\frac{1}{\sqrt{2}}\)

\(\frac{1}{2}\)

\(\text{0}\)

\(\sin θ\)

\(\text{0}\)

\(\frac{1}{2}\)

\(\frac{1}{\sqrt{2}}\)

\(\frac{\sqrt{3}}{2}\)

\(\text{1}\)

\(\tan θ\)

\(\text{0}\)

\(\frac{1}{\sqrt{3}}\)

\(\text{1}\)

\(\sqrt{3}\)

undef

CAST diagram and reduction formulae

2b56c3f89f685c430c6cc22358093016.png

Negative angles

Periodicity Identities

Cofunction Identities

\(\sin\left(-\theta \right)=-\sin\theta\)

\(\sin\left(\theta ±{360}°\right)=\sin\theta\)

\(\sin\left({90}°-\theta \right)=\cos\theta\)

\(\cos\left(-\theta \right)=\cos\theta\)

\(\cos\left(\theta ±{360}°\right)=\cos\theta\)

\(\cos\left({90}°-\theta \right)=\sin\theta\)

\(\tan\left(-\theta \right)=-\tan\theta\)

\(\tan\left(\theta ±{180}°\right)=\tan\theta\)

\(\sin\left({90}°+\theta \right)=\cos\theta\)

\(\cos\left({90}°+\theta \right)=- \sin\theta\)

bfb7596890eaba3fbefbb9bf7d2e0dfc.png

Area Rule

Sine Rule

Cosine Rule

\(\text{Area}=\frac{1}{2}bc\sin \hat{A}\)

\(\frac{\sin \hat{A}}{a}=\frac{\sin \hat{B}}{b}=\frac{\sin \hat{C}}{c}\)

\({a}^{2}={b}^{2}+{c}^{2}-2bc\cos \hat{A}\)

\(\text{Area}=\frac{1}{2}ab\sin \hat{C}\)

\(a \sin \hat{B} = b \sin \hat{A}\)

\({b}^{2}={a}^{2}+{c}^{2}-2ac\cos \hat{B}\)

\(\text{Area}=\frac{1}{2}ac\sin \hat{B}\)

\(b \sin{C} = c \sin \hat{B}\)

\({c}^{2}={a}^{2}+{b}^{2}-2ab\cos \hat{C}\)

\(a \sin{C} = c \sin \hat{A}\)

Compound Angle Identities

Double Angle Identities

\(\sin\left(\theta +\beta\right)=\sin\theta\cos \beta +\cos\theta\sin \beta\)

\(\sin\left(2\theta \right)=2\sin\theta\cos \theta\)

\(\sin\left(\theta -\beta \right)=\sin\theta\cos \beta -\cos\theta\sin \beta\)

\(\cos\left(2\theta \right)={\cos}^{2}\theta -{\sin}^{2}\theta\)

\(\cos\left(\theta +\beta \right)=\cos\theta\cos \beta -\sin\theta\sin \beta\)

\(\cos\left(2\theta \right)=1-2{\sin}^{2}\theta\)

\(\cos\left(\theta -\beta \right)=\cos\theta\cos \beta +\sin\theta\sin \beta\)

\(\cos\left(2\theta \right)=2{\cos}^{2}\theta - 1\)

\(\)

\(\tan\left(2\theta \right)=\frac{ \sin 2 \theta }{ \cos 2 \theta }\)