Home Practice
For learners and parents For teachers and schools
Past papers Textbooks
Mathematics
Mathematics Grade 7 Mathematics Grade 8 Mathematics Grade 9 Mathematics Grade 10 Mathematics Grade 11 Mathematics Grade 12
Mathematical Literacy
Mathematical Literacy Grade 10
Physical Sciences
Physical Sciences Grade 10 Physical Sciences Grade 11 Physical Sciences Grade 12
Natural Sciences
Natural Sciences Grade 4 Natural Sciences Grade 5 Natural Sciences Grade 6 Natural Sciences Grade 7 Natural Sciences Grade 8 Natural Sciences Grade 9
Life Sciences
Life Sciences Grade 10
CAT
CAT Grade 10 CAT Grade 11 CAT Grade 12
IT
IT Grade 10 IT Grade 11 IT Grade 12
Full catalogue
Leaderboards
Learners Leaderboard Grades Leaderboard Schools Leaderboard
Campaigns
Headstart #MillionMaths
Learner opportunities Pricing Support
Help centre Contact us
Log in

We think you are located in South Africa. Is this correct?

Chapter summary

Test yourself now

High marks in science are the key to your success and future plans. Test yourself and learn more on Siyavula Practice.

Sign up and test yourself

Chapter summary

Presentation: 2F44

  • Exponential notation means writing a number as \({a}^{n}\) where \(n\) is any natural number and \(a\) is any real number.

  • \(a\) is the base and \(n\) is the exponent or index.

  • Definition:

    • \({a}^{n}=a\times a\times \cdots \times a \enspace \left(n \text{ times}\right)\)

    • \({a}^{0}=1\), if \(a\ne 0\)

    • \({a}^{-n}=\dfrac{1}{{a}^{n}}\), if \(a\ne 0\)

    • \(\dfrac{1}{a^{-n}} = a^{n}\), if \(a\ne 0\)

  • The laws of exponents:

    • \(a^{m} \times a^{n} = a^{m + n}\)

    • \(\dfrac{{a}^{m}}{{a}^{n}}={a}^{m-n}\)

    • \({\left(ab\right)}^{n}={a}^{n}{b}^{n}\)

    • \({\left(\dfrac{a}{b}\right)}^{n}=\dfrac{{a}^{n}}{{b}^{n}}\)

    • \({\left({a}^{m}\right)}^{n}={a}^{mn}\)

  • When simplifying expressions with exponents, we can reduce the bases to prime bases or factorise.
  • When solving equations with exponents, we can apply the rule that if \(a^{x}=a^{y}\) then \(x=y\); or we can factorise the expressions.