Home Practice
For learners and parents For teachers and schools
Past papers Textbooks
Mathematics
Mathematics Grade 7 Mathematics Grade 8 Mathematics Grade 9 Mathematics Grade 10 Mathematics Grade 11 Mathematics Grade 12
Mathematical Literacy
Mathematical Literacy Grade 10
Physical Sciences
Physical Sciences Grade 10 Physical Sciences Grade 11 Physical Sciences Grade 12
Natural Sciences
Natural Sciences Grade 4 Natural Sciences Grade 5 Natural Sciences Grade 6 Natural Sciences Grade 7 Natural Sciences Grade 8 Natural Sciences Grade 9
Life Sciences
Life Sciences Grade 10
CAT
CAT Grade 10 CAT Grade 11 CAT Grade 12
IT
IT Grade 10 IT Grade 11 IT Grade 12
Full catalogue
Leaderboards
Learners Leaderboard Grades Leaderboard Schools Leaderboard
Campaigns
Headstart #MillionMaths
Learner opportunities Pricing Support
Help centre Contact us
Log in

We think you are located in South Africa. Is this correct?

End of chapter exercises

End of chapter exercises

Textbook Exercise 4.9

Determine the equation of the line:

through points \(\left(-1;3\right)\) and \(\left(1;4\right)\)

\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1}\\ &= \frac{4-3}{1 +1}\\ \therefore m &= \frac{1}{2} \\ y &= mx + c \\ \therefore y &= \frac{1}{2}x + c \\ \text{Subst. } (1;4): \quad 4 &= \frac{1}{2}(1) + c \\ \therefore c &= 3\frac{1}{2} \\ \therefore y &= \frac{1}{2}x + \frac{7}{2} \end{align*}

through points \(\left(7;-3\right)\) and \(\left(0;4\right)\)

\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1}\\ &= \frac{4+3}{0-7} \\ &= \frac{7}{-7} \\ \therefore m &= -1 \\ y &= mx + c \\ \therefore y &= -x + c \\ \text{Subst. } (0;4): \quad 4 &= -1(0) + c \\ \therefore c &= 4 \\ \therefore y &= -x + 4 \end{align*}

parallel to \(y=\frac{1}{2}x+3\) and passing through \(\left(-2;3\right)\)

\begin{align*} \therefore m &= \frac{1}{2} \\ y &= mx + c \\ \therefore y &= \frac{1}{2}x + c \\ \text{Subst. } (-2;3): \quad 3 &= \frac{1}{2}(-2) + c \\ \therefore c &= 4 \\ \therefore y &= \frac{1}{2}x + 4 \end{align*}

perpendicular to \(y=-\frac{1}{2}x+3\) and passing through \(\left(-1;2 \right)\)

\begin{align*} \therefore m &= 2 \\ y &= mx + c \\ \therefore y &= 2x + c \\ \text{Subst. } (-1;2): \quad 2 &= 2(-1) + c \\ \therefore c &= 4 \\ \therefore y &= 2x + 4 \end{align*}

perpendicular to \(3y+x=6\) and passing through the origin

\begin{align*} 3y + x &= 6 \\ y &= -\frac{1}{3}x + 2 \\ \therefore m &= 3 \\ y &= mx + c \\ \therefore y &= 3x + c \\ \text{Subst. } (0;0): \quad 0 &= 3(0) + c \\ \therefore c &= 0 \\ \therefore y &= 3x \end{align*}

Determine the angle of inclination of the following lines:

\(y=2x-3\)

\begin{align*} \therefore m &= 2 \\ \tan \theta &= m \\ \tan \theta &= 2 \\ \therefore \theta &= \tan^{-1}2 \\ \theta &= \text{63,4}\text{°} \end{align*}

\(y=\frac{1}{3}x-7\)

\begin{align*} \therefore m &= \frac{1}{3} \\ \tan \theta &= m \\ \tan \theta &= \frac{1}{3} \\ \therefore \theta &= \tan^{-1} \left( \frac{1}{3} \right) \\ \theta &= \text{18,4}\text{°} \end{align*}

\(4y=3x+8\)

\begin{align*} 4y&=3x+8 \\ y&=\frac{3}{4}x+2 \\ \therefore m &= \frac{3}{4} \\ \tan \theta &= m \\ \tan \theta &= \frac{3}{4} \\ \therefore \theta &= \tan^{-1} \left( \frac{3}{4} \right) \\ \theta &= \text{36,9}\text{°} \end{align*}

\(y=-\frac{2}{3}x+3\)

\begin{align*} \therefore m &= -\frac{2}{3} \\ \tan \theta &= m \\ \tan \theta &= -\frac{2}{3} \\ \therefore \theta &= \tan^{-1} \left( -\frac{2}{3}\right) \\ \theta &= -\text{33}\text{°} + \text{180}\text{°} \\ \therefore \theta &= \text{146,3}\text{°} \end{align*}

\(3y+x-3=0\)

\begin{align*} 3y+x-3&=0 \\ y &= -\frac{1}{3} + 1 \\ \therefore m &= -\frac{1}{3} \\ \tan \theta &= m \\ \tan \theta &= -\frac{1}{3} \\ \therefore \theta &= \tan^{-1} \left( -\frac{1}{3}\right) \\ \theta &= -\text{18,4}\text{°} + \text{180}\text{°} \\ \therefore \theta &= \text{161,6}\text{°} \end{align*}

\(P(2;3)\), \(Q(-4;0)\) and \(R(5;-3)\) are the vertices of \(\triangle PQR\) in the Cartesian plane. \(PR\) intersects the \(x\)-axis at \(S\). Determine the following:

the equation of the line \(PR\)

\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1}\\ &= \frac{-3-3}{5-2} \\ &= \frac{-6}{3} \\ \therefore m &= -2 \\ y &= mx + c \\ \therefore y &= -2x + c \\ \text{Subst. } (2;3): \quad 3 &= -2(2) + c \\ \therefore c &= 7 \\ \therefore y &= -2x + 7 \end{align*}

the coordinates of point \(S\)

\begin{align*} y &= -2x + 7 \\ 0 &= -2x + 7 \\ \therefore x &= \frac{7}{2} \\ \therefore &S\left( \frac{7}{2}; 0 \right) \end{align*}

the angle of inclination of \(PR\) (correct to two decimal places)

\begin{align*} \therefore m &= -2 \\ \tan \theta &= m \\ \tan \theta &= -2 \\ \therefore \theta &= \tan^{-1} \left( -2 \right) \\ \theta &= -\text{63,4}\text{°} + \text{180}\text{°} \\ \therefore \theta &= \text{116,6}\text{°} \end{align*}

the gradient of line \(PQ\)

\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1}\\ &= \frac{3-0}{2+4} \\ &= \frac{3}{6} \\ \therefore m &= \frac{1}{2} \end{align*}

\(Q\hat{P}R\)

\(Q\hat{P}R = \text{90}\text{°}\)

the equation of the line perpendicular to \(PQ\) and passing through the origin

\begin{align*} m_{PQ} &= \frac{1}{2}\\ \therefore m_{\perp}&= -2 \\ y &= -2x + c \\ c &= 0 \\ \therefore y &= -2x \end{align*}

the mid-point \(M\) of \(QR\)

\begin{align*} M(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{-4+5}{2}; \frac{0-3}{2} \right) \\ &= \left( \frac{1}{2}; -\frac{3}{2} \right) \end{align*}

the equation of the line parallel to \(PR\) and passing through point \(M\)

\begin{align*} m &= -2 \\ y &= mx + c \\ y &= -2x + c \\ \text{Subst. } \left( \frac{1}{2}; -\frac{3}{2} \right): \quad -\frac{3}{2} &= -2\left( \frac{1}{2} \right) + c \\ c &= -\frac{1}{2} \\ y &= - 2x -\frac{1}{2} \end{align*}

Points \(A(-3;5)\), \(B(-7;-4)\) and \(C(2;0)\) are given.

Plot the points on the Cartesian plane.

8833e2815c2b451670b90b1d1a4baf24.png

Determine the coordinates of \(D\) if \(ABCD\) is a parallelogram.

\begin{align*} m_{BC} &= \frac{-4-0}{-7-2} \\ &= \frac{4}{9} \\ \therefore m_{AD} &= \frac{4}{9} \\ \therefore \text{ from } A(-3;5): &\quad 9 \text{ units to the right and } 4 \text{ units up} \end{align*}

Prove that \(ABCD\) is a rhombus.

\begin{align*} AB &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(-7-(-3))^2 + (-4-5)^2} \\ &= \sqrt{(-4)^2 + (-9)^2} \\ &= \sqrt{16 + 81} \\ &= \sqrt{97} \\ AD &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(-3-6)^2 + (5-9)^2} \\ &= \sqrt{(-9)^2 + (-4)^2} \\ &= \sqrt{81 + 16} \\ &= \sqrt{97} \\ \therefore AB &= AD \\ \therefore \text{ parallelogram } ABCD &\text{ is a rhombus (adj. sides equal ) } \end{align*}
3f536a1a89dd309ffcdb4654136f472f.png

Consider the sketch above, with the following lines shown:

\(y = -x -3\)

\(y = 3\)

\(y = \frac{5}{2}x + \frac{1}{2}\)

Determine the coordinates of the point \(N\).

\begin{align*} \frac{5}{2}x + \frac{1}{2} &= -x - 3 \\ \frac{5}{2}x + x &= - 3 - \frac{1}{2} \\ \frac{7}{2}x &= -\frac{7}{2} \\ \therefore x &= -1 \\ \therefore y &= -(-1) - 3 \\ &= -2 \\ \therefore &N\left( -1;-2 \right) \end{align*}

Determine the coordinates of the point \(P\).

\begin{align*} y &= \frac{5}{2}x + \frac{1}{2} \\ y &= \frac{5}{2}(3) + \frac{1}{2} \\ &= 8 \\ \therefore &P\left( 8;3 \right) \end{align*}

Determine the equation of the vertical line \(MN\).

\(x = -1\)

Determine the length of the vertical line \(MN\).

\begin{align*} MN &= 2 + 3 \\ &= \text{5}\text{ units} \end{align*}

Find \(M\hat{N}P\).

\begin{align*} \text{Let } M\hat{P}N &= \theta \\ y &= \frac{5}{2}x + \frac{1}{2}\\ \tan \theta &= m \\ \tan \theta &= \frac{5}{2} \\ \therefore \theta &= \text{68,2}\text{°} \\ \text{In } \triangle MNP \quad M\hat{N}P &= \text{180}\text{°} - \text{90}\text{°} - \text{68,2}\text{°} \\ \therefore M\hat{N}P &= \text{21,8}\text{°} \end{align*}

Determine the equation of the line parallel to \(NP\) and passing through the point \(M\).

\begin{align*} m &= \frac{5}{2} \\ y &=mx +c \\ y &=\frac{5}{2}x +c \\ \text{Subst. } M(-1;3): \quad 3 &= \frac{5}{2}(-1) + c \\ \therefore c &= 3 + \frac{5}{2} \\ &= \frac{11}{2} \\ \therefore y &=\frac{5}{2}x + \frac{11}{2} \end{align*}

The following points are given: \(A(-2;3)\), \(B(2;4)\), \(C(3;0)\).

Plot the points on the Cartesian plane.

6f1379fafc651d44ce27cdbce7200f5d.png

Prove that \(\triangle ABC\) is a right-angled isosceles triangle.

\begin{align*} BC &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(3-2)^2 + (0-4)^2} \\ &= \sqrt{(1)^2 + (4)^2} \\ &= \sqrt{1 + 16} \\ &= \sqrt{17} \\ AB &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(2+2)^2 + (4-3)^2} \\ &= \sqrt{(4)^2 + (1)^2} \\ &= \sqrt{16 + 1} \\ &= \sqrt{17} \\ \therefore BC &= AB \\ \therefore \triangle ABC &\text{ is isosceles triangle } \\ AC &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(3+2)^2 + (0-3)^2} \\ &= \sqrt{(5)^2 + (-3)^2} \\ &= \sqrt{25+9} \\ &= \sqrt{34} \\ \text{And } BC^2 + AB^2 &= 17 + 17 \\ &= 34 \\ &= AC^2 \\ \therefore \triangle ABC &\text{ is right-angled triangle} \end{align*}

Determine the equation of the line \(AB\).

\begin{align*} m &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{4-3}{2+2} \\ &= \frac{1}{4} \\ y &=mx +c \\ y &=\frac{1}{4}x +c \\ \text{Subst. } M(-2;3): \quad 3 &= \frac{1}{4}(-2) + c \\ \therefore c &= \frac{7}{2} \\ \therefore y &=\frac{1}{4}x + \frac{7}{2} \end{align*}

Determine the coordinates of \(D\) if \(ABCD\) is a square.

\(D(-1;-1)\)

Determine the coordinates of \(E\), the mid-point of \(BC\).

\begin{align*} E(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{2+3}{2}; \frac{4+0}{2} \right) \\ &= \left( \frac{5}{2}; 2 \right) \end{align*}

Given points \(S(2;5)\), \(T(-3;-4)\) and \(V(4;-2)\).

Determine the equation of the line \(ST\).

\begin{align*} m &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{-4-5}{-3-2} \\ &= \frac{-9}{-6} \\ &= \frac{3}{2} \\ y &=mx +c \\ y &=\frac{3}{2}x +c \\ \text{Subst. } M(2;5): \quad 5 &= \frac{3}{2}(2) + c \\ \therefore c &= 2\\ \therefore y &=\frac{3}{2}x + 2 \end{align*}

Determine the size of \(T\hat{S}V\).

\begin{align*} m_{ST} &= \frac{3}{2} \\ \tan \beta &= \frac{3}{2} \\ \therefore \beta &= \tan^{-1} \left( \frac{3}{2} \right) \\ &= \text{49,6}\text{°} \\ m_{SV} &= \frac{5+2}{2-4} \\ &= \frac{7}{-2} \\ \tan \theta &= -\frac{7}{2} \\ \therefore \theta &= \tan^{-1} \left( -\frac{7}{2} \right) \\ &= -\text{74,1}\text{°} + \text{180}\text{°} \\ &= \text{105,9}\text{°} \\ \therefore T\hat{S}V &= \text{105,9}\text{°} - \text{56,3}\text{°} \\ &= \text{49,6}\text{°} \end{align*}

Consider triangle \(FGH\) with vertices \(F(-1;3)\), \(G(2;1)\) and \(H(4;4)\).

Sketch \(\triangle FGH\) on the Cartesian plane.

054fa49133a3743682dd12576440a89f.png

Show that \(\triangle FGH\) is an isosceles triangle.

\begin{align*} FG &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(-1-2)^2 + (3-1)^2} \\ &= \sqrt{(-3)^2 + (2)^2} \\ &= \sqrt{9 + 4} \\ &= \sqrt{13} \\ GH &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(4-2)^2 + (4-1)^2} \\ &= \sqrt{(2)^2 + (3)^2} \\ &= \sqrt{4 + 9} \\ &= \sqrt{13} \\ \therefore FG &= GH \\ \therefore \triangle FGH &\text{ is isosceles triangle } \end{align*}

Determine the equation of the line \(PQ\), perpendicular bisector of \(FH\).

\begin{align*} Q(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{4-1}{2}; \frac{4+3}{2} \right) \\ &= \left( \frac{3}{2}; \frac{7}{2} \right) \\ m &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{4-3}{4+1} \\ &= \frac{1}{5} \\ \therefore m_{\perp} &= -5 \\ y &=mx +c \\ y &=-5x +c \\ \text{Subst. } Q\left( \frac{3}{2}; \frac{7}{2} \right): \quad \frac{7}{2} &= -5 \left( \frac{3}{2} \right) + c \\ \therefore c &= 11 \\ \therefore y &= -5x + 11 \end{align*}

Does \(G\) lie on the line \(PQ\)?

\begin{align*} y &=-5x + 11 \\ G(2;1) \therefore \text{subst. } x=2: \quad y &= -5 \left( 2 \right) + 11 \\ &= -10 + 11 \\ &= 1 \\ \text{Yes, } G & \text{ lies on PQ } \end{align*}

Determine the equation of the line parallel to \(GH\) and passing through point \(F\).

\begin{align*} m_{GH} &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{4-1}{4-2} \\ &= \frac{3}{2} \\ y &=mx +c \\ y &=\frac{3}{2}x +c \\ \text{Subst. } F\left( -1;3 \right): \quad 3 &= \frac{3}{2}(-1) + c \\ \therefore c &= \frac{9}{2} \\ \therefore y &= \frac{3}{2}x + \frac{9}{2} \end{align*}

Given the points \(A(-1;5)\), \(B(5;-3)\) and \(C(0;-6)\). \(M\) is the mid-point of \(AB\) and \(N\) is the mid-point of \(AC\).

Draw a sketch on the Cartesian plane.

bac99d3951ca4f26582a15be1d150875.png

Show that the coordinates of \(M\) and \(N\) are \((2;1)\) and \((-\frac{1}{2};-\frac{1}{2})\) respectively.

\begin{align*} M(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{-1+5}{2}; \frac{5-3}{2} \right) \\ &= \left( \frac{4}{2}; \frac{2}{2} \right) \\ &= \left( 2; 1 \right) \\ N(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{-1+0}{2}; \frac{5-6}{2} \right) \\ &= \left( -\frac{1}{2}; -\frac{1}{2} \right) \end{align*}

Use analytical geometry methods to prove the mid-point theorem. (Prove that \(NM \parallel CB\) and \(NM = \frac{1}{2}CB\).)

\begin{align*} m_{NM} &= \frac{y_2-y_1}{x_2-x_1} \\ &= \dfrac{1+\frac{1}{2}}{2+\frac{1}{2}} \\ &= \dfrac{\frac{3}{2}}{\frac{5}{2}} \\ &= \frac{3}{5} \\ m_{CB} &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{-3+6}{5-0} \\ &= \frac{3}{5} \\ m_{NM} &= m_{CB} \\ \therefore NM &\parallel CB \\ NM &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(2+\frac{1}{2})^2 + (1+\frac{1}{2})^2} \\ &= \sqrt{(\frac{5}{2})^2 + (\frac{3}{2})^2} \\ &= \sqrt{\frac{25}{4} + \frac{9}{4}} \\ &= \sqrt{\frac{34}{4}} \\ &= \frac{1}{2}\sqrt{34} \\ CB &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(5-0)^2 + (-3+6)^2} \\ &= \sqrt{(5)^2 + (3)^2} \\ &= \sqrt{25 + 9} \\ &= \sqrt{34} \\ \therefore NM &= \frac{1}{2}CB \end{align*}