Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

End of chapter exercises

End of chapter exercises

Textbook Exercise 4.9

Determine the equation of the line:

through points \(\left(-1;3\right)\) and \(\left(1;4\right)\)

\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1}\\ &= \frac{4-3}{1 +1}\\ \therefore m &= \frac{1}{2} \\ y &= mx + c \\ \therefore y &= \frac{1}{2}x + c \\ \text{Subst. } (1;4): \quad 4 &= \frac{1}{2}(1) + c \\ \therefore c &= 3\frac{1}{2} \\ \therefore y &= \frac{1}{2}x + \frac{7}{2} \end{align*}

through points \(\left(7;-3\right)\) and \(\left(0;4\right)\)

\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1}\\ &= \frac{4+3}{0-7} \\ &= \frac{7}{-7} \\ \therefore m &= -1 \\ y &= mx + c \\ \therefore y &= -x + c \\ \text{Subst. } (0;4): \quad 4 &= -1(0) + c \\ \therefore c &= 4 \\ \therefore y &= -x + 4 \end{align*}

parallel to \(y=\frac{1}{2}x+3\) and passing through \(\left(-2;3\right)\)

\begin{align*} \therefore m &= \frac{1}{2} \\ y &= mx + c \\ \therefore y &= \frac{1}{2}x + c \\ \text{Subst. } (-2;3): \quad 3 &= \frac{1}{2}(-2) + c \\ \therefore c &= 4 \\ \therefore y &= \frac{1}{2}x + 4 \end{align*}

perpendicular to \(y=-\frac{1}{2}x+3\) and passing through \(\left(-1;2 \right)\)

\begin{align*} \therefore m &= 2 \\ y &= mx + c \\ \therefore y &= 2x + c \\ \text{Subst. } (-1;2): \quad 2 &= 2(-1) + c \\ \therefore c &= 4 \\ \therefore y &= 2x + 4 \end{align*}

perpendicular to \(3y+x=6\) and passing through the origin

\begin{align*} 3y + x &= 6 \\ y &= -\frac{1}{3}x + 2 \\ \therefore m &= 3 \\ y &= mx + c \\ \therefore y &= 3x + c \\ \text{Subst. } (0;0): \quad 0 &= 3(0) + c \\ \therefore c &= 0 \\ \therefore y &= 3x \end{align*}

Determine the angle of inclination of the following lines:

\(y=2x-3\)

\begin{align*} \therefore m &= 2 \\ \tan \theta &= m \\ \tan \theta &= 2 \\ \therefore \theta &= \tan^{-1}2 \\ \theta &= \text{63,4}\text{°} \end{align*}

\(y=\frac{1}{3}x-7\)

\begin{align*} \therefore m &= \frac{1}{3} \\ \tan \theta &= m \\ \tan \theta &= \frac{1}{3} \\ \therefore \theta &= \tan^{-1} \left( \frac{1}{3} \right) \\ \theta &= \text{18,4}\text{°} \end{align*}

\(4y=3x+8\)

\begin{align*} 4y&=3x+8 \\ y&=\frac{3}{4}x+2 \\ \therefore m &= \frac{3}{4} \\ \tan \theta &= m \\ \tan \theta &= \frac{3}{4} \\ \therefore \theta &= \tan^{-1} \left( \frac{3}{4} \right) \\ \theta &= \text{36,9}\text{°} \end{align*}

\(y=-\frac{2}{3}x+3\)

\begin{align*} \therefore m &= -\frac{2}{3} \\ \tan \theta &= m \\ \tan \theta &= -\frac{2}{3} \\ \therefore \theta &= \tan^{-1} \left( -\frac{2}{3}\right) \\ \theta &= -\text{33}\text{°} + \text{180}\text{°} \\ \therefore \theta &= \text{146,3}\text{°} \end{align*}

\(3y+x-3=0\)

\begin{align*} 3y+x-3&=0 \\ y &= -\frac{1}{3} + 1 \\ \therefore m &= -\frac{1}{3} \\ \tan \theta &= m \\ \tan \theta &= -\frac{1}{3} \\ \therefore \theta &= \tan^{-1} \left( -\frac{1}{3}\right) \\ \theta &= -\text{18,4}\text{°} + \text{180}\text{°} \\ \therefore \theta &= \text{161,6}\text{°} \end{align*}

\(P(2;3)\), \(Q(-4;0)\) and \(R(5;-3)\) are the vertices of \(\triangle PQR\) in the Cartesian plane. \(PR\) intersects the \(x\)-axis at \(S\). Determine the following:

the equation of the line \(PR\)

\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1}\\ &= \frac{-3-3}{5-2} \\ &= \frac{-6}{3} \\ \therefore m &= -2 \\ y &= mx + c \\ \therefore y &= -2x + c \\ \text{Subst. } (2;3): \quad 3 &= -2(2) + c \\ \therefore c &= 7 \\ \therefore y &= -2x + 7 \end{align*}

the coordinates of point \(S\)

\begin{align*} y &= -2x + 7 \\ 0 &= -2x + 7 \\ \therefore x &= \frac{7}{2} \\ \therefore &S\left( \frac{7}{2}; 0 \right) \end{align*}

the angle of inclination of \(PR\) (correct to two decimal places)

\begin{align*} \therefore m &= -2 \\ \tan \theta &= m \\ \tan \theta &= -2 \\ \therefore \theta &= \tan^{-1} \left( -2 \right) \\ \theta &= -\text{63,4}\text{°} + \text{180}\text{°} \\ \therefore \theta &= \text{116,6}\text{°} \end{align*}

the gradient of line \(PQ\)

\begin{align*} m &= \frac{y_2 - y_1}{x_2 - x_1}\\ &= \frac{3-0}{2+4} \\ &= \frac{3}{6} \\ \therefore m &= \frac{1}{2} \end{align*}

\(Q\hat{P}R\)

\(Q\hat{P}R = \text{90}\text{°}\)

the equation of the line perpendicular to \(PQ\) and passing through the origin

\begin{align*} m_{PQ} &= \frac{1}{2}\\ \therefore m_{\perp}&= -2 \\ y &= -2x + c \\ c &= 0 \\ \therefore y &= -2x \end{align*}

the mid-point \(M\) of \(QR\)

\begin{align*} M(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{-4+5}{2}; \frac{0-3}{2} \right) \\ &= \left( \frac{1}{2}; -\frac{3}{2} \right) \end{align*}

the equation of the line parallel to \(PR\) and passing through point \(M\)

\begin{align*} m &= -2 \\ y &= mx + c \\ y &= -2x + c \\ \text{Subst. } \left( \frac{1}{2}; -\frac{3}{2} \right): \quad -\frac{3}{2} &= -2\left( \frac{1}{2} \right) + c \\ c &= -\frac{1}{2} \\ y &= - 2x -\frac{1}{2} \end{align*}

Points \(A(-3;5)\), \(B(-7;-4)\) and \(C(2;0)\) are given.

Plot the points on the Cartesian plane.

8833e2815c2b451670b90b1d1a4baf24.png

Determine the coordinates of \(D\) if \(ABCD\) is a parallelogram.

\begin{align*} m_{BC} &= \frac{-4-0}{-7-2} \\ &= \frac{4}{9} \\ \therefore m_{AD} &= \frac{4}{9} \\ \therefore \text{ from } A(-3;5): &\quad 9 \text{ units to the right and } 4 \text{ units up} \end{align*}

Prove that \(ABCD\) is a rhombus.

\begin{align*} AB &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(-7-(-3))^2 + (-4-5)^2} \\ &= \sqrt{(-4)^2 + (-9)^2} \\ &= \sqrt{16 + 81} \\ &= \sqrt{97} \\ AD &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(-3-6)^2 + (5-9)^2} \\ &= \sqrt{(-9)^2 + (-4)^2} \\ &= \sqrt{81 + 16} \\ &= \sqrt{97} \\ \therefore AB &= AD \\ \therefore \text{ parallelogram } ABCD &\text{ is a rhombus (adj. sides equal ) } \end{align*}
3f536a1a89dd309ffcdb4654136f472f.png

Consider the sketch above, with the following lines shown:

\(y = -x -3\)

\(y = 3\)

\(y = \frac{5}{2}x + \frac{1}{2}\)

Determine the coordinates of the point \(N\).

\begin{align*} \frac{5}{2}x + \frac{1}{2} &= -x - 3 \\ \frac{5}{2}x + x &= - 3 - \frac{1}{2} \\ \frac{7}{2}x &= -\frac{7}{2} \\ \therefore x &= -1 \\ \therefore y &= -(-1) - 3 \\ &= -2 \\ \therefore &N\left( -1;-2 \right) \end{align*}

Determine the coordinates of the point \(P\).

\begin{align*} y &= \frac{5}{2}x + \frac{1}{2} \\ y &= \frac{5}{2}(3) + \frac{1}{2} \\ &= 8 \\ \therefore &P\left( 8;3 \right) \end{align*}

Determine the equation of the vertical line \(MN\).

\(x = -1\)

Determine the length of the vertical line \(MN\).

\begin{align*} MN &= 2 + 3 \\ &= \text{5}\text{ units} \end{align*}

Find \(M\hat{N}P\).

\begin{align*} \text{Let } M\hat{P}N &= \theta \\ y &= \frac{5}{2}x + \frac{1}{2}\\ \tan \theta &= m \\ \tan \theta &= \frac{5}{2} \\ \therefore \theta &= \text{68,2}\text{°} \\ \text{In } \triangle MNP \quad M\hat{N}P &= \text{180}\text{°} - \text{90}\text{°} - \text{68,2}\text{°} \\ \therefore M\hat{N}P &= \text{21,8}\text{°} \end{align*}

Determine the equation of the line parallel to \(NP\) and passing through the point \(M\).

\begin{align*} m &= \frac{5}{2} \\ y &=mx +c \\ y &=\frac{5}{2}x +c \\ \text{Subst. } M(-1;3): \quad 3 &= \frac{5}{2}(-1) + c \\ \therefore c &= 3 + \frac{5}{2} \\ &= \frac{11}{2} \\ \therefore y &=\frac{5}{2}x + \frac{11}{2} \end{align*}

The following points are given: \(A(-2;3)\), \(B(2;4)\), \(C(3;0)\).

Plot the points on the Cartesian plane.

6f1379fafc651d44ce27cdbce7200f5d.png

Prove that \(\triangle ABC\) is a right-angled isosceles triangle.

\begin{align*} BC &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(3-2)^2 + (0-4)^2} \\ &= \sqrt{(1)^2 + (4)^2} \\ &= \sqrt{1 + 16} \\ &= \sqrt{17} \\ AB &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(2+2)^2 + (4-3)^2} \\ &= \sqrt{(4)^2 + (1)^2} \\ &= \sqrt{16 + 1} \\ &= \sqrt{17} \\ \therefore BC &= AB \\ \therefore \triangle ABC &\text{ is isosceles triangle } \\ AC &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(3+2)^2 + (0-3)^2} \\ &= \sqrt{(5)^2 + (-3)^2} \\ &= \sqrt{25+9} \\ &= \sqrt{34} \\ \text{And } BC^2 + AB^2 &= 17 + 17 \\ &= 34 \\ &= AC^2 \\ \therefore \triangle ABC &\text{ is right-angled triangle} \end{align*}

Determine the equation of the line \(AB\).

\begin{align*} m &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{4-3}{2+2} \\ &= \frac{1}{4} \\ y &=mx +c \\ y &=\frac{1}{4}x +c \\ \text{Subst. } M(-2;3): \quad 3 &= \frac{1}{4}(-2) + c \\ \therefore c &= \frac{7}{2} \\ \therefore y &=\frac{1}{4}x + \frac{7}{2} \end{align*}

Determine the coordinates of \(D\) if \(ABCD\) is a square.

\(D(-1;-1)\)

Determine the coordinates of \(E\), the mid-point of \(BC\).

\begin{align*} E(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{2+3}{2}; \frac{4+0}{2} \right) \\ &= \left( \frac{5}{2}; 2 \right) \end{align*}

Given points \(S(2;5)\), \(T(-3;-4)\) and \(V(4;-2)\).

Determine the equation of the line \(ST\).

\begin{align*} m &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{-4-5}{-3-2} \\ &= \frac{-9}{-6} \\ &= \frac{3}{2} \\ y &=mx +c \\ y &=\frac{3}{2}x +c \\ \text{Subst. } M(2;5): \quad 5 &= \frac{3}{2}(2) + c \\ \therefore c &= 2\\ \therefore y &=\frac{3}{2}x + 2 \end{align*}

Determine the size of \(T\hat{S}V\).

\begin{align*} m_{ST} &= \frac{3}{2} \\ \tan \beta &= \frac{3}{2} \\ \therefore \beta &= \tan^{-1} \left( \frac{3}{2} \right) \\ &= \text{49,6}\text{°} \\ m_{SV} &= \frac{5+2}{2-4} \\ &= \frac{7}{-2} \\ \tan \theta &= -\frac{7}{2} \\ \therefore \theta &= \tan^{-1} \left( -\frac{7}{2} \right) \\ &= -\text{74,1}\text{°} + \text{180}\text{°} \\ &= \text{105,9}\text{°} \\ \therefore T\hat{S}V &= \text{105,9}\text{°} - \text{56,3}\text{°} \\ &= \text{49,6}\text{°} \end{align*}

Consider triangle \(FGH\) with vertices \(F(-1;3)\), \(G(2;1)\) and \(H(4;4)\).

Sketch \(\triangle FGH\) on the Cartesian plane.

054fa49133a3743682dd12576440a89f.png

Show that \(\triangle FGH\) is an isosceles triangle.

\begin{align*} FG &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(-1-2)^2 + (3-1)^2} \\ &= \sqrt{(-3)^2 + (2)^2} \\ &= \sqrt{9 + 4} \\ &= \sqrt{13} \\ GH &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(4-2)^2 + (4-1)^2} \\ &= \sqrt{(2)^2 + (3)^2} \\ &= \sqrt{4 + 9} \\ &= \sqrt{13} \\ \therefore FG &= GH \\ \therefore \triangle FGH &\text{ is isosceles triangle } \end{align*}

Determine the equation of the line \(PQ\), perpendicular bisector of \(FH\).

\begin{align*} Q(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{4-1}{2}; \frac{4+3}{2} \right) \\ &= \left( \frac{3}{2}; \frac{7}{2} \right) \\ m &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{4-3}{4+1} \\ &= \frac{1}{5} \\ \therefore m_{\perp} &= -5 \\ y &=mx +c \\ y &=-5x +c \\ \text{Subst. } Q\left( \frac{3}{2}; \frac{7}{2} \right): \quad \frac{7}{2} &= -5 \left( \frac{3}{2} \right) + c \\ \therefore c &= 11 \\ \therefore y &= -5x + 11 \end{align*}

Does \(G\) lie on the line \(PQ\)?

\begin{align*} y &=-5x + 11 \\ G(2;1) \therefore \text{subst. } x=2: \quad y &= -5 \left( 2 \right) + 11 \\ &= -10 + 11 \\ &= 1 \\ \text{Yes, } G & \text{ lies on PQ } \end{align*}

Determine the equation of the line parallel to \(GH\) and passing through point \(F\).

\begin{align*} m_{GH} &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{4-1}{4-2} \\ &= \frac{3}{2} \\ y &=mx +c \\ y &=\frac{3}{2}x +c \\ \text{Subst. } F\left( -1;3 \right): \quad 3 &= \frac{3}{2}(-1) + c \\ \therefore c &= \frac{9}{2} \\ \therefore y &= \frac{3}{2}x + \frac{9}{2} \end{align*}

Given the points \(A(-1;5)\), \(B(5;-3)\) and \(C(0;-6)\). \(M\) is the mid-point of \(AB\) and \(N\) is the mid-point of \(AC\).

Draw a sketch on the Cartesian plane.

bac99d3951ca4f26582a15be1d150875.png

Show that the coordinates of \(M\) and \(N\) are \((2;1)\) and \((-\frac{1}{2};-\frac{1}{2})\) respectively.

\begin{align*} M(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{-1+5}{2}; \frac{5-3}{2} \right) \\ &= \left( \frac{4}{2}; \frac{2}{2} \right) \\ &= \left( 2; 1 \right) \\ N(x;y) &= \left( \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \right) \\ &= \left( \frac{-1+0}{2}; \frac{5-6}{2} \right) \\ &= \left( -\frac{1}{2}; -\frac{1}{2} \right) \end{align*}

Use analytical geometry methods to prove the mid-point theorem. (Prove that \(NM \parallel CB\) and \(NM = \frac{1}{2}CB\).)

\begin{align*} m_{NM} &= \frac{y_2-y_1}{x_2-x_1} \\ &= \dfrac{1+\frac{1}{2}}{2+\frac{1}{2}} \\ &= \dfrac{\frac{3}{2}}{\frac{5}{2}} \\ &= \frac{3}{5} \\ m_{CB} &= \frac{y_2-y_1}{x_2-x_1} \\ &= \frac{-3+6}{5-0} \\ &= \frac{3}{5} \\ m_{NM} &= m_{CB} \\ \therefore NM &\parallel CB \\ NM &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(2+\frac{1}{2})^2 + (1+\frac{1}{2})^2} \\ &= \sqrt{(\frac{5}{2})^2 + (\frac{3}{2})^2} \\ &= \sqrt{\frac{25}{4} + \frac{9}{4}} \\ &= \sqrt{\frac{34}{4}} \\ &= \frac{1}{2}\sqrt{34} \\ CB &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ &= \sqrt{(5-0)^2 + (-3+6)^2} \\ &= \sqrt{(5)^2 + (3)^2} \\ &= \sqrt{25 + 9} \\ &= \sqrt{34} \\ \therefore NM &= \frac{1}{2}CB \end{align*}