Home Practice
For learners and parents For teachers and schools
Full catalogue
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

End of chapter exercises

End of chapter exercises

Textbook Exercise 7.6
Describe this figure in terms of a prism.
Square prism with a triagonal prism on one side. Note that this is not a pentagonal prism since not all the angles are the same size.
Draw a net of this figure.

Which of the following is a net of a cube?

  1. f3797e3dfe708fd91bed12cbf8c558fe.png
  2. 9a08a32debb21cbd04ab2fd60eaef1ab.png
  3. 90e36b162c8901671af4bf6661235280.png
  4. 200301dd44e2956bd4c7ab623ec192ee.png
  5. 69bbc90570224c5ee2987ae45cb94d76.png

a and d

Name and draw the following figures:

A prism with the least number of sides.
Triangular prism
A pyramid with the least number of vertices.
Triangular pyramid
A right prism with a kite base.
Rhombic prism

Determine how much paper is needed to make a box of width \(\text{16}\) \(\text{cm}\), height \(\text{3}\) \(\text{cm}\) and length \(\text{20}\) \(\text{cm}\) (assume no overlapping at corners).

\begin{align*} \text{Box surface area}&=2[3\times16+3\times20+16\times20] \\ &=2[428] \\ &= \text{856}\text{ cm$^{2}$} \end{align*}
Give a mathematical name for the shape of the box.
Rectangular prism
Calculate the volume of the box.
\begin{align*} \text{Volume } &=3\times16\times20 \\ &=\text{960}\text{ cm$^{3}$} \end{align*}

Determine how much paper is needed to make a cube with a capacity of \(\text{1}\) \(\text{L}\).

\begin{align*} 1 \text{ L}&= \text{1 000}\text{ cm$^{3}$} \\ \therefore \text{Side length }&= \text{10}\text{ cm} \\ \text{Surface area}&=6\times(10\times10) \\ &= \text{600}\text{ cm$^{2}$} \end{align*}

Compare the box and the cube. Which has the greater volume and which requires the most paper to make?

The cube has a greater volume and the box requires more paper to make.

\(ABCD\) is a rhombus with sides of length \(\frac{3}{2}x\) millimetres. The diagonals intersect at \(O\) and length \(DO = x\) millimetres. Express the area of \(ABCD\) in terms of \(x\).

\begin{align*} AD &= \frac{3}{2}x \\ DO&=x \\ AO^2&=\left ( \frac{3}{2}x \right )^2-x^2 \quad (\text{ Pythagoras})\\ &=\frac{9}{4}x^2-x^2\\ &=\frac{5}{4}x^2 \\ \therefore AO&=\frac{x\sqrt{5}}{2} \\ \therefore AC&=x\sqrt{5} \\ \text{Area }&=\frac{1}{2}AC\times BD\\ &=\frac{1}{2}\times x \sqrt{5} \times 2x \\ &=\sqrt{5} x^2 \end{align*}

The diagram shows a rectangular pyramid with a base of length \(\text{80}\) \(\text{cm}\) and breadth \(\text{60}\) \(\text{cm}\). The vertical height of the pyramid is \(\text{45}\) \(\text{cm}\).

Calculate the volume of the pyramid.
\begin{align*} \text{Volume }&=\frac{1}{3}\times\text{area of base}\times\text{height} \\ &=\frac{1}{3}(80\times60)\times45 \\ &=\text{72 000}\text{ cm$^{3}$} \end{align*}
Calculate \(H\) and \(h\).
\begin{align*} H^2&=30^2+45^2 \quad (\text{ Pythagoras})\\ &= \text{2 925} \\ \therefore H&=\text{54}\text{ cm} \\ h^2&=45^2+40^2 \quad (\text{ Pythagoras})\\ h&=\text{60,2}\text{ cm} \end{align*}
Calculate the surface area of the pyramid.
\begin{align*} \text{Surface area }&=2 \left (\frac{1}{2}\times80\times H \right )+2\left ( \frac{1}{2} \times 60\times h\right )+80\times 60\\ &=(80 \times 54)+(60 \times \text{60,2})+\text{4 800}\\ &=\text{12 732}\text{ cm$^{2}$} \end{align*}

A group of children are playing soccer in a field. The soccer ball has a capacity of \(\text{5 000}\) \(\text{cc}\) (cubic centimetres). A drain pipe in the corner of the field has a diameter of \(\text{20}\) \(\text{cm}\). Is it possible for the children to lose their ball down the pipe? Show your calculations.

\begin{align*} \text{Volume of ball }&= \frac{4}{3}\pi r^3 \\ &=\text{5 000}\\ \therefore r&= \text{10,6} \\ \text{And diameter }&=\text{21,2}\text{ cm}\\ \text{Diameter of pipe}&=\text{20}\text{ cm} \end{align*}

No, the ball is too big to go down the drain pipe.

A litre of washing powder goes into a standard cubic container at the factory.

Determine the length of the sides of the container.
\[\text{Dimensions: } \text{10}\text{ cm}\times\text{10}\text{ cm}\times\text{10}\text{ cm}\]
Determine the dimensions of the cubic container required to hold double the volume of washing powder.
\begin{align*} 2l&=\text{2 000}\text{ cm$^{3}$}\\ \therefore s&=\sqrt[3]{\text{2 000}} \\ &=\text{12,6}\text{ cm} \end{align*}

A cube has sides of length \(k\) units.

Describe the effect on the volume of the cube if the height is tripled.
\begin{align*} \text{Volume }&=k \times k\times k \\ &=k^3 \\ \text{New volume }&=k\times k\times 3k \\ &=3k^3 \end{align*}
If all three dimensions of the cube are tripled, determine the effect on the outer surface area.
\begin{align*} \text{Surface area } &= 6\times k^2 \\ &=6k^2 \\ \text{Surface area }&= 6\times (3k)^2 \\ &=54k^2 \end{align*}
If all three dimensions of the cube are tripled, determine the effect on the volume.
\begin{align*} \text{Volume }&=k^3 \\ \text{New volume }&=(3k)^3 \\ &=27k^3 \end{align*}