Home Practice
For learners and parents For teachers and schools
Past papers Textbooks
Mathematics
Mathematics Grade 7 Mathematics Grade 8 Mathematics Grade 9 Mathematics Grade 10 Mathematics Grade 11 Mathematics Grade 12
Mathematical Literacy
Mathematical Literacy Grade 10
Physical Sciences
Physical Sciences Grade 10 Physical Sciences Grade 11 Physical Sciences Grade 12
Natural Sciences
Natural Sciences Grade 4 Natural Sciences Grade 5 Natural Sciences Grade 6 Natural Sciences Grade 7 Natural Sciences Grade 8 Natural Sciences Grade 9
Life Sciences
Life Sciences Grade 10
CAT
CAT Grade 10 CAT Grade 11 CAT Grade 12
IT
IT Grade 10 IT Grade 11 IT Grade 12
Full catalogue
Leaderboards
Learners Leaderboard Grades Leaderboard Schools Leaderboard
Campaigns
Headstart #MillionMaths
Learner opportunities Pricing Support
Help centre Contact us
Log in

We think you are located in South Africa. Is this correct?

6.5 Second derivative

6.5 Second derivative (EMCH9)

temp text

The second derivative of a function is the derivative of the first derivative and it indicates the change in gradient of the original function. The sign of the second derivative tells us if the gradient of the original function is increasing, decreasing or remaining constant.

To determine the second derivative of the function \(f(x)\), we differentiate \(f'(x)\) using the rules for differentiation.

\[f''(x) = \frac{d}{dx}[f'(x)]\]

We also use the following notation for determining the second derivative of \(y\):

\[y'' = \frac{d}{dx}\left[\frac{dy}{dx}\right] = \frac{d^{2}y}{dx^{2}}\]

Worked example 16: Finding the second derivative

Calculate the second derivative for each of the following:

  1. \(k(x) = 2x^{3} - 4x^{2} + 9\)
  2. \(y = \frac{3}{x}\)
  1. \begin{align*} k'(x) &= 2(3x^{2}) - 4(2x) + 0 \\ &= 6x^{2} - 8x \\ & \\ k''(x) &= 6(2x) - 8 \\ &= 12x - 8 \end{align*}
  2. \begin{align*} y &= 3x^{-1} \\ & \\ \frac{dy}{dx} &= 3(-1x^{-2}) \\ &= -3x^{-2} \\ &= -\frac{3}{x^{2}} \\ & \\ \frac{d^{2}y}{dx^{2}} &= -3(-2x^{-3}) \\ &= \frac{6}{x^{3}} \end{align*}

Second derivative

Textbook Exercise 6.6

Calculate the second derivative for each of the following:

\(g(x)=5x^{2}\)

\begin{align*} g'(x)&=10x \\ g''(x)&=10 \end{align*}

\(y=8x^{3}-7x\)

\begin{align*} \frac{dy}{dx}&=24x^{2}-7 \\ \frac{d^{2}y}{dx^{2}}&=48x \end{align*}

\(f(x)=x(x-6)+10\)

\begin{align*} f(x)&=x^{2}-6x+10 \\ f'(x)&=2x-6 \\ f''(x)&=2 \end{align*}

\(y=x^{5}-x^{3}+x-1\)

\begin{align*} \frac{dy}{dx}&=5x^{4}-3x^{2}+1 \\ \frac{d^{2}y}{dx^{2}}&=20x^{3}-6x \end{align*}

\(k(x)=(x^{2}+1)(x-1)\)

\begin{align*} k(x)&=x^{3}-x^{2}+x-1 \\ k'(x)&=3x^{2}-2x+1 \\ k''(x)&=6x-2 \end{align*}

\(p(x)=-\frac{10}{x^{2}}\)

\begin{align*} p(x)&= -10x^{-2} \\ p'(x)&=20x^{-3} = \frac{20}{x^{3}}\\ p''(x)&=-60x^{-4}=\frac{-60}{x^{4}} \end{align*}

\(q(x)=\sqrt{x}+5x^{2}\)

\begin{align*} q(x)&=x^{\frac{1}{2}}+5x^{2} \\ q'(x)&=\frac{1}{2}x^{-\frac{1}{2}}+10x \\ q''(x)&=-\frac{1}{4}x^{-\frac{3}{2}}+10 \\ &=-\frac{1}{4\sqrt{x^{3}}}+10 \end{align*}

Find the first and second derivatives of \(f(x)=5x(2x+3)\).

\begin{align*} f(x)&=10x^{2}+15x \\ f'(x)&=20x+15\\ f''(x)&=20 \end{align*}

Find \(\dfrac{d^{2}}{dx^{2}}\left[6\sqrt[3]{x^{2}}\right]\).

\begin{align*} y&=6\sqrt[3]{x^{2}} \\ &=6x^{\frac{2}{3}} \\ \frac{dy}{dx}&= 6\left(\frac{2}{3}\right)x^{\frac{2}{3}-1} \\ &=4x^{-\frac{1}{3}} \\ \frac{d^{2}y}{dx^{2}}&=4\left(-\frac{1}{3}\right)x^{-\frac{1}{3}-1} \\ &= -\frac{4}{3}x^{-\frac{4}{3}} \\ &=-\frac{4}{3\sqrt[3]{x^{4}}} \end{align*}

Given the function \(g: \enspace y=(1-2x)^{3}\).

Determine \(g'\) and \(g''\).
\begin{align*} g(x)&=(1-2x)^{3} \\ &=(1-2x)(1-2x)^{2} \\ &=(1-2x)(1-4x+4x^{2}) \\ &=1 - 6x + 12x^{2} - 8x^{3} \\ g'(x)&=-6+24x-24x^{2} \\ g''(x)&=24-48x \end{align*}

What type of function is:

  1. \(g'\)
  2. \(g''\)
  1. \(g'(x) =-6+24x-24x^{2} \enspace \text{ (quadratic function)} \\\)
  2. \(g''(x) =24-48x \enspace \text{ (linear function)}\)
Find the value of \(g''\left(\frac{1}{2}\right)\).
\begin{align*} g''\left(\frac{1}{2}\right)&= 24 - 48\left(\frac{1}{2}\right) \\ &= 24 - 24 \\ &=0 \end{align*}
What do you observe about the degree (highest power) of each of the derived functions?

Each derivative function is one degree lower than the previous one.