Home Practice
For learners and parents For teachers and schools
Past papers Textbooks
Mathematics
Mathematics Grade 7 Mathematics Grade 8 Mathematics Grade 9 Mathematics Grade 10 Mathematics Grade 11 Mathematics Grade 12
Mathematical Literacy
Mathematical Literacy Grade 10
Physical Sciences
Physical Sciences Grade 10 Physical Sciences Grade 11 Physical Sciences Grade 12
Natural Sciences
Natural Sciences Grade 4 Natural Sciences Grade 5 Natural Sciences Grade 6 Natural Sciences Grade 7 Natural Sciences Grade 8 Natural Sciences Grade 9
Life Sciences
Life Sciences Grade 10
CAT
CAT Grade 10 CAT Grade 11 CAT Grade 12
IT
IT Grade 10 IT Grade 11 IT Grade 12
Full catalogue
Leaderboards
Learners Leaderboard Grades Leaderboard Schools Leaderboard
Campaigns
Headstart #MillionMaths
Learner opportunities Pricing Support
Help centre Contact us
Log in

We think you are located in South Africa. Is this correct?

6.8 Summary

Test yourself now

High marks in science are the key to your success and future plans. Test yourself and learn more on Siyavula Practice.

Sign up and test yourself

6.8 Summary (EMCHM)

  • The limit of a function exists and is equal to \(L\) if the values of \(f(x)\) get closer to \(L\) from both sides as \(x\) gets closer to \(a\).

    \[\lim_{x\to a} f(x) = L\]
  • Average gradient or average rate of change:

    \[\text{Average gradient } = \frac{f\left(x+h\right)-f\left(x\right)}{h}\]
  • Gradient at a point or instantaneous rate of change:

    \[f'(x) = \lim_{h\to 0}\frac{f\left(x+h\right)-f\left(x\right)}{h}\]
  • Notation

    \[{f}'\left(x\right)={y}'=\frac{dy}{dx}=\frac{df}{dx}=\frac{d}{dx}[f\left(x\right)]=Df\left(x\right)={D}_{x}y\]
  • Differentiating from first principles:

    \[f'(x) = \lim_{h\to 0}\frac{f\left(x+h\right)-f\left(x\right)}{h}\]
  • Rules for differentiation:

    • General rule for differentiation:

      \[\frac{d}{dx}\left[{x}^{n}\right]=n{x}^{n-1}, \text{ where } n \in \mathbb{R} \text{ and } n \ne 0.\]
    • The derivative of a constant is equal to zero.

      \[\frac{d}{dx}\left[k\right]= 0\]
    • The derivative of a constant multiplied by a function is equal to the constant multiplied by the derivative of the function.

      \[\frac{d}{dx}\left[k \cdot f\left(x\right) \right]=k \frac{d}{dx}\left[ f\left(x\right) \right]\]
    • The derivative of a sum is equal to the sum of the derivatives.

      \[\frac{d}{dx}\left[f\left(x\right)+g\left(x\right)\right]=\frac{d}{dx}\left[f\left(x\right) \right] + \frac{d}{dx}\left[g\left(x\right)\right]\]
    • The derivative of a difference is equal to the difference of the derivatives.

      \[\frac{d}{dx}\left[f\left(x\right) - g\left(x\right)\right]=\frac{d}{dx}\left[f\left(x\right) \right] - \frac{d}{dx}\left[g\left(x\right)\right]\]
  • Second derivative:

    \[f''(x) = \frac{d}{dx}[f'(x)]\]
  • Sketching graphs:

    The gradient of the curve and the tangent to the curve at stationary points is zero.

    Finding the stationary points: let \(f'(x) = 0\) and solve for \(x\).

    A stationary point can either be a local maximum, a local minimum or a point of inflection.

  • Optimisation problems:

    Use the given information to formulate an expression that contains only one variable.

    Differentiate the expression, let the derivative equal zero and solve the equation.