Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

End of chapter exercises

End of chapter exercises

Textbook Exercise 8.10

Calculate \(SV\)

c7cbf9596c75885b19ae66c7beb2b644.png

\[\begin{array}{rll} V\hat{T}U & = W\hat{V}T & \quad \text{(alt. } \angle \text{s}, WV \parallel TU) \\ \therefore TU & = VU = 35 & \quad \text{(isosceles } \triangle \text{)} \\ \frac{SW}{WT} & = \frac{SV}{VU} & \quad \text{(proportion Theorem)} \\ \therefore SV & = \frac{SW.VU}{WT} & \\ & = \frac{(10)(35)}{20} & \\ & = \text{17,5}\text{ units} & \\ \end{array}\]

\(\frac{CB}{YB}=\frac{3}{2}\). Find \(\frac{DS}{SZ}\).

6f7f0fa67cabb6179201b339c8692429.png

\[\begin{array}{rll} DABC & \text{ is a parallelogram } & (DA \parallel CB \text{ and } DC \parallel AB)\\ DS &= SB & (\text{diagonals bisect})\\ & & \\ \dfrac{SZ}{ZB} &= \dfrac{CY}{YB} = \frac{3}{2} & (CS \parallel YZ)\\ & & \\ \dfrac{SZ}{SB} &= \dfrac{CY}{CB} = \frac{3}{5} & (CS \parallel YZ)\\ & & \\ \therefore SZ &= \frac{3}{5} SB & \\ & & \\ \therefore \dfrac{DS}{SZ} &= \dfrac{DS}{\frac{3}{5} SB} & (DS = SB) \\ & & \\ &= \frac{5}{3} & \end{array}\]

Using the following figure and lengths, find \(IJ\) and \(KJ\) (correct to one decimal place).

\(HI= \text{20}\text{ m},KL= \text{14}\text{ m}, JL=\text{18}\text{ m}\) and \(HJ=\text{32}\text{ m}\).

03b4c5e31b4833ffcd86d47f91636cf9.png

\[\begin{array}{rll} \dfrac{IJ}{LJ} & = \dfrac{HI}{KL} & \quad \text{(proportion Theorem)}\\ & & \\ IJ & = \dfrac{HI}{KL}(LJ) & \\ & & \\ & = \dfrac{20}{14}(18) & \\ & & \\ & = \dfrac{180}{7} & \\ & & \\ & = \text{25,7}\text{ m} & \end{array}\]

\[\begin{array}{rll} KJ & = \dfrac{LJ}{IJ}(HJ) & \\ & & \\ & = \dfrac{18}{\text{25,7}}(32) & \\ & & \\ & = \text{22,4}\text{ m} & \\ \end{array}\]

Find \(FH\) in the following figure.

7091e704140db00d61721471ee4016f1.png
\[\begin{array}{rll} G\hat{F}H & = \hat{D} & \text{(corresp. } \angle \text{s}, GF \parallel ED) \\ G\hat{F}E & = F\hat{E}D & \text{(alt. } \angle \text{s}, GF \parallel ED) \\ \therefore F\hat{E}D & = \hat{D} & \\ \therefore EF &= FD = \text{45}\text{ cm} & \\ \frac{HF}{FD } &= \frac{21}{42} & \\ &= \frac{1}{2} & \\ \therefore HF & = \frac{1}{2}(45) & \\ & = \text{23,5}\text{ cm} & \end{array}\]

In \(\triangle GHI\), \(GH\parallel LJ\), \(GJ\parallel LK\) and \(\frac{JK}{KI}=\frac{5}{3}\). Determine \(\frac{HJ}{KI}\).

b82c0991a5e4ca17c0e5d5de651d91d0.png
\[\begin{array}{rll} L\hat{I}J & = G\hat{I}H &\\ J\hat{L}I & = H\hat{G}I & \text{(corresp. }\angle \text{s}, HG \parallel JL) \\ \therefore \triangle LIJ & \enspace ||| \enspace \triangle GIH & \text{(Equiangular }\triangle \text{s)} \end{array}\] \[\begin{array}{rll} \frac{HJ}{JI}& =\frac{GL}{LI} & \left(\triangle LIJ \enspace ||| \enspace \triangle GIH\right)\\ \text{and }\frac{GL}{LI}& =\frac{JK}{KI} & \left(\triangle LIK \enspace ||| \enspace \triangle GIJ\right)\\ & =\frac{5}{3} \\ \therefore \frac{HJ}{JI}& =\frac{5}{3} \end{array}\] \begin{align*} \frac{HJ}{KI} & = \frac{HJ}{JI} \times \frac{JI}{KI} \end{align*} \begin{align*} JI & = JK+KI \\ & = \frac{5}{3}KI+KI \\ & = \frac{8}{3}KI \\ \frac{JI}{KI} & = \frac{8}{3} \\ & \\ \frac{HJ}{KI} & = \frac{HJ}{JI} \times \frac{JI}{KI} \\ & = \frac{5}{3}\times \frac{8}{3} \\ & = \frac{40}{9} \end{align*}

\(BF=\text{25}\text{ m}\), \(AB=\text{13}\text{ m}\), \(AD=\text{9}\text{ m}\), \(DF=\text{18}\text{ m}\).

Calculate the lengths of \(BC\), \(CF\), \(CD\), \(CE\) and \(EF\), and find the ratio \(\frac{DE}{AC}\).

cbb30a6ab1146572a627f0ff7fa6757d.png
\[\begin{array}{rll} \frac{BC}{BF} & = \frac{AD}{AF} = \frac{9}{27} = \frac{1}{3} & (CD \parallel BA) \\ \therefore BC & = \frac{1}{3} \times 25 & \\ &= \text{8,3}\text{ m} & \\ & & \\ CF &= BF - BC & \\ &= 25 - \text{8,3} & \\ &= \text{16,7}\text{ m} & \\ & & \\ \frac{CD}{AB} &= \frac{DF}{AF} & (CD \parallel BA) \\ CD &= \frac{DF}{AF} \times AB & \\ &= \frac{18}{27} \times 13 & \\ &= \text{8,7}\text{ m} & \\ & & \\ \frac{CE}{CF} &= \frac{AD}{AF} & (DE \parallel AC) \\ CE &= \frac{AD}{AF} \times CF & \\ &= \frac{9}{27} \times \text{16,7} & \\ &= \text{5,6}\text{ m} & \\ & & \\ EF &= BF - (BC + CE) & \\ &= 25 - (\text{8,3} - \text{5,6}) & \\ &= \text{11,1}\text{ m} & \end{array}\]

In \(\triangle XYZ\), \(X\hat{Y}Z =\text{90}°\) and \(YT \perp XZ\). If \(XY = \text{14}\text{ cm}\) and \(XT = \text{4}\text{ cm}\), determine \(XZ\) and \(YZ\) (correct to two decimal places).

8e5c46eb2730d8e89a7725e031b103e9.png

Use the theorem of Pythagoras to determine \(YT\):

\[\begin{array}{rll} \text{In } \triangle XTY, \quad YT^{2} &= XY^{2} - XT^{2} & (\text{Pythagoras}) \\ &= 14^{2} - 4^{2} & \\ &= 196 - 16 & \\ \therefore YT &= \sqrt{180} & \\ &= \sqrt{36 \times 5} & \\ &= 6 \sqrt{5} ~\text{cm} & \end{array}\]

Use proportionality to determine \(XZ\) and \(YZ\):

\[\begin{array}{rll} X\hat{Y}Z &= \text{90}° & \text{(given)} \\ YT &\perp XZ & \text{(given)} \\ \therefore \enspace \triangle XYT \enspace & ||| \enspace \triangle YZT \enspace ||| \enspace \triangle XZY & (\text{right-angled } \triangle \text{s}) \\ & & \\ \therefore \dfrac{YT}{TZ} &= \dfrac{XT}{YT} & (\triangle YZT \enspace ||| \enspace \triangle XYT ) \\ & & \\ \therefore YT^{2} &= TZ \cdot XT & \\ & & \\ \left( 6 \sqrt{5} \right)^{2} &= TZ \cdot 4 & \\ & & \\ \therefore TZ &= 45 & \\ & & \\ \text{And } XZ &= XT + TZ & \\ &= 4 + 45 & \\ &= \text{49}\text{ cm} & \\ & & \\ \text{In } \triangle XYZ, \quad YZ^{2} &= XZ^{2} - XY^{2} & (\text{Pythagoras}) \\ &= 49^{2} - 14^{2} & \\ \therefore YZ &= \sqrt{2205} & \\ &= \text{46,96}\text{ cm} & \end{array}\]

Given the following figure with the following lengths, find \(AE\), \(EC\) and \(BE\).

\(BC=15\) cm, \(AB=4\) cm, \(CD=18\) cm, and \(ED=9\) cm.

1de202d0ec64d6da36a49c939d27ade2.png

\[\begin{array}{rll} B\hat{A}E & = C\hat{D}E & \text{(alt. } \angle \text{s}, AB \parallel CD) \\ A\hat{B}E & = D\hat{C}E & \text{(alt. } \angle \text{s}, AB \parallel CD) \\ A\hat{E}B & = D\hat{E}C & \text{(vert. opp. } \angle \text{s)}\\ \therefore \triangle AEB & \enspace ||| \enspace \triangle DEC & \text{(AAA)}\\ \therefore \frac{AE}{DE} & = \frac{AB}{DC} = \frac{4}{18} = \frac{2}{9} & (\triangle AEB \enspace ||| \enspace \triangle DEC) \\ & & \\ AE & = \dfrac{2}{9} DE & \\ & & \\ & = \dfrac{2}{9} (9) & \\ & & \\ & = \text{2}\text{ cm} & \\ \end{array}\]

\[\begin{array}{rll} \frac{EC}{BC} & = \dfrac{ED}{AD} = \dfrac{9}{11} & (AB \parallel CD) \\ & & \\ EC & = \dfrac{ED}{AD}(BC) & \\ & & \\ & = \dfrac{9}{11}(15) & \\ & & \\ & = \text{12,3}\text{ cm} & \\ \end{array}\]

\[\begin{array}{rll} \frac{BE}{BC} & = \dfrac{AE}{AD} = \dfrac{2}{11} & (AB \parallel CD) \\ & & \\ BE & = \dfrac{AE}{AD}(BC) & \\ & & \\ & = \dfrac{2}{11}(15) & \\ & & \\ & = \text{2,7}\text{ cm} & \\ \end{array}\]

\(NKLM\) is a parallelogram with \(T\) on \(KL\).

\(NT\) produced meets \(ML\) produced at \(V\). \(NT\) intercepts \(MK\) at \(X\).

de7e318e4f6f2cf3d8e45f67e91194a0.png

Prove that \(\dfrac{XT}{NX} = \dfrac{XK}{MX}\).

In \(\triangle TXK\) and \(\triangle NXM\):

\[\begin{array}{rll} X\hat{T}K&= X\hat{N}M & (\text{alt. } \angle \text{s, } NK \parallel MV) \\ N\hat{X}M&= T\hat{X}K & (\text{vert. opp. } \angle \text{s}) \\ \therefore \triangle TXK & \enspace ||| \enspace \triangle NXM & (\text{AAA}) \\ \therefore \dfrac{TX}{NX} &= \dfrac{XK}{XM} & \end{array}\]

Prove \(\triangle VXM \enspace ||| \enspace \triangle NXK\).

In \(\triangle VXM \text{ and } \triangle NXK\):

\[\begin{array}{rll} \hat{V}&= X\hat{N}K & (\text{alt. } \angle \text{s, } NK \parallel MV) \\ M\hat{X}V&= K\hat{X}N & (\text{vert. opp. } \angle \text{s}) \\ \therefore \triangle VXM& \enspace ||| \enspace \triangle NXK & (\text{AAA}) \end{array}\]

If \(XT = \text{3}\text{ cm}\) and \(TV = \text{4}\text{ cm}\), calculate \(NX\).

\[\begin{array}{rll} \dfrac{VX}{NX} &= \dfrac{XM}{XK} & (\triangle VXM \enspace ||| \enspace \triangle NXK \text{, proved in (b)}) \\ \text{But } \dfrac{XM}{XK} &= \dfrac{NX}{TX} & (\text{proved in (a)}) \\ \therefore \dfrac{VX}{NX} &= \dfrac{NX}{TX} & \\ NX^{2} &= VX.TX & \\ NX^{2}&= 3 \times 4 & \\ NX &= \sqrt{12} & \\ &= 2 \sqrt{3} \text{ cm} & \end{array}\]

\(MN\) is a diameter of circle \(O\). \(MN\) is produced to \(R\) so that \(MN =2NR\).

\(RS\) is a tangent to the circle and \(ER \perp MR\). \(MS\) produced meets \(RE\) at \(E\).

94aa96d62723c39e96a966aa30423616.png

Prove that:

\(SNRE\) is a cyclic quadrilateral

\[\begin{array}{rll} M\hat{S}N&= \text{90}° & (\angle \text{ in semi-circle}) \\ N\hat{R}E&=\text{90}° & (\text{given}) \\ \therefore SNRE&\text{ is a cyclic quad. } & (\text{ext. }\angle = \text{ opp. int. } \angle) \end{array}\]

\(RS = RE\)

\[\begin{array}{rll} N\hat{S}R&=\hat{M} = x & (\text{tangent/chord}) \\ \therefore E\hat{S}R&= \text{90}° - x & \\ \hat{E}&= \text{90}° - x & (MRE = \text{90}°, \enspace \hat{M} = x) \\ \therefore E\hat{S}R&= \hat{E} & \\ \therefore RS&= RE & (\text{isos. } \triangle) \end{array}\]

\(\triangle MSN \enspace ||| \enspace \triangle MRE\)

In \(\triangle MSN\) and \(\triangle MRE\):

\[\begin{array}{rll} \hat{M} &=\hat{M} & \\ M\hat{S}N &= \text{90}° & (\angle \text{ in semi-circle}) \\ M\hat{R}E &= \text{90}° & (\text{given}) \\ \therefore M\hat{S}N &= M\hat{R}E & \\ \therefore \triangle MSN& \enspace ||| \enspace \triangle MRE & (\text{AAA}) \end{array}\]

\(\triangle RSN \enspace ||| \enspace \triangle RMS\)

In \(\triangle RSN\) and \(\triangle RMS\):

\[\begin{array}{rll} \hat{R}&= \hat{R} & (\text{common } \angle) \\ R\hat{S}N&= \hat{M} & (\text{tangent/chord}) \\ \therefore \triangle RSN & \enspace ||| \enspace \triangle RMS & (\text{AAA}) \end{array}\]

\(RE^{2} = RN.RM\)

\[\begin{array}{rll} \dfrac{RS}{RN} &= \dfrac{RM}{RS} & \\ RS^{2} &= RN.RM & \\ \text{But } RS &= RE & \\ RE^{2} &= RN.RM & \end{array}\]

\(AC\) is a diameter of circle \(ADC\). \(DB \perp AC\).

\(AC = d, AD = c, DC = a \text{ and } DB = h\).

ef1846d9cba9209f9e263b4930ed0716.png

Prove that \(h = \dfrac{ac}{d}\).

\[\begin{array}{rll} \triangle ADB& \enspace ||| \enspace \triangle DCB \enspace ||| \enspace \triangle ACD & (A\hat{D}C = \text{90}°, DB \perp AC) \\ \therefore \dfrac{DB}{AD}&= \dfrac{CD}{AC} & \\ \therefore \dfrac{h}{c}&= \dfrac{a}{d} & \\ \therefore h&= \dfrac{ac}{d} & \end{array}\]

Hence, deduce that \(\enspace \dfrac{1}{h^{2}}=\dfrac{1}{a^{2}}+\dfrac{1}{c^{2}}\).

\[\begin{array}{rll} h^{2}&= \dfrac{a^{2}c^{2}}{d^{2}} & \\ \text{But } d^{2}&= a^{2} + c^{2} & (\text{In } \triangle ADC, \hat{D} = \text{90}°, \text{ Pythagoras}) \\ \therefore h^{2}&= \dfrac{a^{2}c^{2}}{a^{2}+c^{2}} & \\ \therefore \dfrac{1}{h^{2}}&= \dfrac{a^{2}+c^{2}}{a^{2}c^{2}} & \\ \dfrac{1}{h^{2}}&= \dfrac{a^{2}}{a^{2}c^{2}} + \dfrac{c^{2}}{a^{2}c^{2}} & \\ \dfrac{1}{h^{2}}&= \dfrac{1}{c^{2}} + \dfrac{1}{a^{2}} & \end{array}\]

\(RS\) is a diameter of the circle with centre \(O\). Chord \(ST\) is produced to \(W\). Chord \(SP\) produced meets the tangent \(RW\) at \(V\). \(\hat{\text{R}}_{1} = \text{50}°\).

[NCS, Paper 3, November 2011]

79c32a3a191c1425992900b2defd72ce.png

Calculate the size of \(\text{W}\hat{\text{R}}\text{S}\).

\(W\hat{R}S = \text{90}°\qquad (\text{tangent } \perp \text{ radius})\)

Find \(\hat{\text{W}}\).

\[\begin{array}{rll} R\hat{S}T & = \text{50}° & \qquad(\text{tangent chord th.})\\ \hat{W} & = \text{40}° & \qquad(\angle \text{ sum } \triangle) \end{array}\]

OR

\[\begin{array}{rll} \hat{T}_{1} & = \text{90}° & \qquad(\angle \text{s in semi-circle})\\ \hat{W} + \hat{R}_{1} & = \hat{T}_{1} & \qquad(\text{ ext. } \angle \triangle)\\ \hat{W} & = \text{40}° & \end{array}\]

Determine the size of \(\hat{\text{P}}_1\).

\[\begin{array}{rll} \hat{R}_{2} & = \text{40}° & \qquad(\text{tangent } \perp \text{ radius})\\ \hat{P}_{1} & = \text{40}° & \qquad(\angle \text{s in same seg.}) \end{array}\]

Prove that \(\hat{\text{V}}_1 = \text{P}\hat{\text{T}}\text{S}\).

\[\begin{array}{rll} \hat{P}_{1} & = \hat{W} & \qquad(= \text{40}°)\\ \text{WVPT is}& \text{ a} \text{ cyclic quadrilateral} &(\text{ext. } \angle = \text{ int. opp.})\\ \hat{V}_{1} & = P\hat{T}S & \qquad (\text{ext. } \angle \text{ cyclic quad.}) \end{array}\]

OR

\[\begin{array}{rll} \hat{T}_{1} & =\text{90}° & \qquad(\angle \text{s in semi-circle})\\ P\hat{T}S & = \text{90}° + \hat{T}_{2} & \\ \hat{T}_{2} & = \hat{S}_{1} & \qquad(\angle \text{s in same seg.})\\ P\hat{T}S & = \text{90}° + \hat{S}_{1} & \qquad(\text{ext. } \angle \triangle) \\ \hat{V}_{1} & = P\hat{T}S & \\ \end{array}\]

OR

\[\begin{array}{rll} \hat{P}_{2} & = \text{140}° & \qquad(\angle \text{s on str. line})\\ \hat{W} + \hat{P}_{2} & = \text{180}° & \\ \text{WVPT} &\text{is a cyclic quadrilateral} & \qquad(\text{opp. } \angle \text{s suppl})\\ \hat{V}_{1} & = P\hat{T}S & \qquad(\text{ext } \angle \text{ cyclic quad}) \end{array}\]

OR

\[\begin{array}{rll} \hat{V}_{1} & = \hat{R}_{1} + \hat{R}_{2} + \hat{S}_{1} & \qquad(\text{ext. } \angle \triangle)\\ \hat{V}_{1} & = \text{90}° + \hat{S}_{1} & \\ P\hat{T}S & = \text{90}° + \hat{T}_{2} & \\ \text{but } \hat{T}_{2} & = \hat{S}_{1} & \qquad(\angle \text{s in same seg.})\\ \hat{V}_{1} & = P\hat{T}S & \end{array}\]

OR

In \(\triangle PTS\) and \(\triangle WVS\)

\[\begin{array}{rll} \hat{P}_{1} & = \hat{W} & \qquad(\text{40}°) \\ \hat{S}_{2} & \text{ is common} &\\ \hat{V}_{1} & = P\hat{T}S & \qquad (\angle \text{ sum } \triangle) \end{array}\]

\(ABCD\) is a cyclic quadrilateral and \(BC = CD.\)

\(ECF\) is a tangent to the circle at \(C\). \(ABE\) and \(ADF\) are straight lines.

068b0b09edf4cadc0f3a2c9320bb4024.png

Prove:

\(AC \text{ bisects } E\hat{A}F\)

\[\begin{array}{rll} BC &= CD & (\text{given}) \\ \therefore B\hat{A}C &= D\hat{A}C & (\angle \text{s on equal chords}) \end{array}\]

\(BD \parallel EF\)

\[\begin{array}{rll} D\hat{C}F&= \hat{A_{2}} & (\text{tangent/chord}) \\ B\hat{D}C&= \hat{A_{1}} & (\angle \text{s on same chord}) \\ \hat{A_{1}} &= \hat{A_{2}} & (\text{proved in (a)}) \\ \therefore B\hat{D}C &= D\hat{C}F & \\ \therefore BD & \parallel EF & (\text{alt. } \angle \text{s are equal}) \end{array}\]

\(\triangle ADC \enspace ||| \enspace \triangle CBE\)

In \(\triangle ADC\) and \(\triangle CBE\):

\[\begin{array}{rll} \hat{A_{2}} &= D\hat{B}C & (\angle \text{s on chord } CD) \\ &= B\hat{C}E & (\text{alt. } \angle \text{s, } BD \parallel EF) \\ A\hat{D}C &= E\hat{B}C & (\text{ext. } \angle \text{ of a cyclic quad}) \\ \therefore \triangle ADC & \enspace ||| \enspace \triangle CBE & (\text{AAA}) \end{array}\]

\(DC^{2} = AD.BE\)

\[\begin{array}{rll} \dfrac{DC}{AD} &= \dfrac{BE}{BC} & (\triangle ADC \enspace ||| \enspace \triangle CBE) \\ \text{But } DC &= BC & (\text{given}) \\ \therefore \dfrac{DC}{AD} &= \dfrac{BE}{DC} & \\ \therefore DC^{2} &= AD.BE & \end{array}\]

\(CD\) is a tangent to circle \(ABDEF\) at \(D\). Chord \(AB\) is produced to \(C\). Chord \(BE\) cuts chord \(AD\) in \(H\) and chord \(FD\) in \(G\). \(AC \parallel FD\) and \(EF = AB\). Let \(D_{4} = x\) and \(D_{1} = y\).

[NCS, Paper 3, November 2011]

7b9f2726a6a4c51f04d14b68e3f16ddf.png

Determine THREE other angles that are each equal to \(x\).

\[\begin{array}{r@{\;}l@{\quad}l} \hat{A} & = \hat{D}_{4} = x & (\text{tangent chord th.})\\ \hat{E}_{2} & = x & (\text{tangent chord th.})\\ \hat{D}_{2} & = \hat{A} = x & (\text{alt. } \angle \text{s, } CA \parallel DF) \end{array}\]

Prove that \(\triangle \text{BHD} \enspace ||| \enspace \triangle \text{FED}\).

In \(\triangle BHD\) and \(\triangle FED\)

  1. \(\hat{B}_{2} = \hat{F} \quad(\angle \text{s in same seg.})\)
  2. \(\hat{D}_{3} = \hat{D}_{1} \quad(\text{chord subtends } = \angle \text{s})\)

\(\triangle BHD \enspace ||| \enspace \triangle FED \quad (\angle \angle \angle)\)

Hence, or otherwise, prove that \(AB \cdot BD = FD \cdot BH\).

\[\begin{array}{r@{\;}l@{\quad}l} \frac{FE}{BH} & = \frac{FD}{BD} & (||| \enspace \triangle\text{s})\\ \text{But } FE & = AB & (\text{given})\\ \frac{AB}{BH} & = \frac{FD}{BD} &\\ AB \cdot BD & = FD \cdot BH & \end{array}\]