Home Practice
For learners and parents For teachers and schools
Past papers Textbooks
Mathematics
Mathematics Grade 7 Mathematics Grade 8 Mathematics Grade 9 Mathematics Grade 10 Mathematics Grade 11 Mathematics Grade 12
Mathematical Literacy
Mathematical Literacy Grade 10
Physical Sciences
Physical Sciences Grade 10 Physical Sciences Grade 11 Physical Sciences Grade 12
Natural Sciences
Natural Sciences Grade 4 Natural Sciences Grade 5 Natural Sciences Grade 6 Natural Sciences Grade 7 Natural Sciences Grade 8 Natural Sciences Grade 9
Life Sciences
Life Sciences Grade 10
CAT
CAT Grade 10 CAT Grade 11 CAT Grade 12
IT
IT Grade 10 IT Grade 11 IT Grade 12
Full catalogue
Leaderboards
Learners Leaderboard Grades Leaderboard Schools Leaderboard
Campaigns
Headstart #MillionMaths
Learner opportunities Pricing Support
Help centre Contact us
Log in

We think you are located in South Africa. Is this correct?

10.6 Chapter summary

10.6 Chapter summary (ESCQ2)

Presentation: 27XW

  1. Ohm's Law governs the relationship between current and potential difference for a circuit element at constant temperature. Mathematically we write \(I=\frac{V}{R}\).

  2. Conductors that obey Ohm's Law are called ohmic conductors; those that do not are called non-ohmic conductors.

  3. Ohm's Law can be applied to a single circuit element or the circuit as a whole (if the components are ohmic).

  4. The equivalent resistance of resistors in series (\({R}_{s}\)) can be calculated as follows: \({R}_{s}={R}_{\text{1}}+{R}_{\text{2}}+{R}_{\text{3}}+...+{R}_{n}\)

  5. The equivalent resistance of resistors in parallel (\({R}_{p}\)) can be calculated as follows: \(\frac{\text{1}}{{R}_{p}}=\frac{\text{1}}{{R}_{\text{1}}}+\frac{\text{1}}{{R}_{\text{2}}}+\frac{\text{1}}{{R}_{\text{3}}}+...+\frac{\text{1}}{{R}_{n}}\)

  6. Real batteries have an internal resistance.

  7. The potential difference \(V\) of the battery is related to its emf \(\mathcal{E}\) and internal resistance \(r\) by:

    \begin{align*} \mathcal{E}& = V_{\text{load}} + V_{\text{internal resistance}}\\ &\text{or} \\ \mathcal{E}& = IR_{Ext} + Ir \end{align*}
  8. The external resistance in the circuit is referred to as the load.

Physical Quantities
Quantity Unit name Unit symbol
Current (\(I\)) Amperes \(\text{A}\)
Electrical energy (\(E\)) Joules \(\text{J}\)
Power (\(P\)) Watts \(\text{W}\)
Resistance (\(R\)) Ohms \(\text{Ω}\)
Voltage / Potential difference (\(V\)) Volts \(\text{V}\)

Table 10.1: Units used in electric circuits

temp text