Home Practice
For learners and parents For teachers and schools
Past papers Textbooks
Mathematics
Mathematics Grade 7 Mathematics Grade 8 Mathematics Grade 9 Mathematics Grade 10 Mathematics Grade 11 Mathematics Grade 12
Mathematical Literacy
Mathematical Literacy Grade 10
Physical Sciences
Physical Sciences Grade 10 Physical Sciences Grade 11 Physical Sciences Grade 12
Natural Sciences
Natural Sciences Grade 4 Natural Sciences Grade 5 Natural Sciences Grade 6 Natural Sciences Grade 7 Natural Sciences Grade 8 Natural Sciences Grade 9
Life Sciences
Life Sciences Grade 10
CAT
CAT Grade 10 CAT Grade 11 CAT Grade 12
IT
IT Grade 10 IT Grade 11 IT Grade 12
Full catalogue
Leaderboards
Learners Leaderboard Grades Leaderboard Schools Leaderboard
Campaigns
Headstart #MillionMaths
Learner opportunities Pricing Support
Help centre Contact us
Log in

We think you are located in South Africa. Is this correct?

5.5 Solving cubic equations

5.5 Solving cubic equations (EMCGX)

Now that we know how to factorise cubic polynomials, it is also easy to solve cubic equations of the form \(a{x}^{3}+b{x}^{2}+cx+d=0\).

Worked example 13: Solving cubic equations

Solve: \(6{x}^{3}-5{x}^{2}-17x+6 = 0\)

Find one factor using the factor theorem

Let \(f(x) = 6{x}^{3}-5{x}^{2}-17x+6\)

Try

\(f\left(1\right)=6{\left(1\right)}^{3}-5{\left(1\right)}^{2}-17\left(1\right)+6=6-5-17+6=-10\)

Therefore \(\left(x-1\right)\) is not a factor.

Try

\(f\left(2\right)=6{\left(2\right)}^{3}-5{\left(2\right)}^{2}-17\left(2\right)+6=48-20-34+6=0\)

Therefore \(\left(x-2\right)\) is a factor.

Factorise by inspection

\[6{x}^{3}-5{x}^{2}-17x+6=\left(x-2\right)\left(6{x}^{2}+7x-3\right)\]

Factorise fully

\[6{x}^{3}-5{x}^{2}-17x+6 = \left(x-2\right) \left(2x+3\right) \left(3x-1\right)\]

Solve the equation

\begin{align*} 6{x}^{3}-5{x}^{2}-17x+6 & = 0 \\ \left(x-2\right)\left(2x+3\right)\left(3x-1\right) & = 0 \\ x = 2 \text{ or } x & = \frac{1}{3} \text{ or } x = -\frac{3}{2} \end{align*}

Sometimes it is not possible to factorise a quadratic expression using inspection, in which case we use the quadratic formula to fully factorise and solve the cubic equation.

\[x=\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}\]

Worked example 14: Solving cubic equations

Solve for \(x\): \(0 = {x}^{3}-2{x}^{2}-6x+4\)

Use the factor theorem to determine a factor

Let \(f(x)= {x}^{3}-2{x}^{2}-6x+4\)

Try

\(f\left(1\right)={\left(1\right)}^{3}-2{\left(1\right)}^{2}-6\left(1\right)+4=1-2-6+4=-3\)

Therefore \(\left(x-1\right)\) is not a factor.

Try

\(f\left(2\right)={\left(2\right)}^{3}-2{\left(2\right)}^{2}-6\left(2\right)+4=8-8-12+4=-8\)

Therefore \(\left(x-2\right)\) is not a factor.

\(f\left(-2\right)={\left(-2\right)}^{3}-2{\left(-2\right)}^{2}-6\left(-2\right)+4=-8-8+12+4=0\)

Therefore \(\left(x+2\right)\) is a factor.

Factorise by inspection

\[{x}^{3}-2{x}^{2}-6x+4 = \left(x+2\right) \left({x}^{2}-4x+2\right)\]

\({x}^{2}-4x+2\) cannot be factorised any further and we are left with

\(\left(x+2\right)\left({x}^{2}-4x+2\right)=0\)

Solve the equation

\begin{align*} \left(x+2\right)\left({x}^{2}-4x+2\right) & = 0 \\ \left(x+2\right)=0 & \text{ or } \left({x}^{2}-4x+2\right)=0 \end{align*}

Apply the quadratic formula for the second bracket

Always write down the formula first and then substitute the values of \(a,b\) and \(c\).

\[a = 1; \qquad b = -4; \qquad c = 2\]

\begin{align*} x & = \frac{-b±\sqrt{{b}^{2}-4ac}}{2a} \\ & = \frac{-\left(-4\right)±\sqrt{{\left(-4\right)}^{2} -4\left(1\right)\left(2\right)}}{2\left(1\right)} \\ & = \frac{4±\sqrt{8}}{2} \\ & = 2±\sqrt{2} \end{align*}

Final solutions

\(x=-2\) or \(x=2±\sqrt{2}\)

temp text

Solving cubic equations

Textbook Exercise 5.6

Solve the following cubic equations:

\(x^{3} + x^{2} - 16x = 16\)

\begin{align*} x^{3} + x^{2} - 16x &= 16 \\ x^{3} + x^{2} - 16x - 16 &= 0 \\ \text{Let } a(x) &= x^{3} + x^{2} - 16x - 16 \\ a(-1) &= (-1)^{3} + (-1)^{2} - 16(-1) - 16 \\ &= -1 + 1 +16 - 16 \\ &= 0 \\ \therefore a(x) &= (x + 1)(x^{2} -16) \\ &= (x + 1)(x -4)(x + 4) \\ \therefore 0 &= (x + 1)(x -4)(x + 4) \\ \therefore x=-1 & \text{ or } x = 4 \text{ or } x = -4 \end{align*}

\(-n^{3} - n^{2} + 22n + 40 = 0\)

\begin{align*} n^{3} + n^{2} - 22n - 40 &= 0 \\ \text{Let } a(n) &= n^{3} + n^{2} - 22n - 40 \\ a(-2) &= (-2)^{3} + (-2)^{2} - 22(-2) - 40 \\ &= -8 +4 +44 -40\\ &= 0 \\ \therefore a(n) &= (n + 2)(n^{2} -n -20) \\ &= (n+2)(n-5)(n+4) \\ \therefore 0 &= (n+2)(n-5)(n+4) \\ \therefore n=-2 & \text{ or } n = -4 \text{ or } n = 5 \end{align*}

\(y(y^{2} + 2y) = 19y + 20\)

\begin{align*} y(y^{2} + 2y) &= 19y + 20 \\ y^{3} + 2y^{2} - 19y - 20 &= 0\\ \text{Let } a(y) &= y^{3} + 2y^{2} - 19y - 20 \\ a(-1) &= (-1)^{3} + 2(-1)^{2} - 19(-1) - 20 \\ &= -1 +2 +19 -20 \\ &= 0 \\ \therefore a(y) &= (y + 1)(y^{2} +y -20) \\ &= (y + 1)(y + 5)(y - 4) \\ \therefore 0 &= (y + 1)(y + 5)(y - 4) \\ \therefore y=-1 & \text{ or } y = 4 \text{ or } y = -5 \end{align*}

\(k^{3} + 9k^{2} + 26k + 24 = 0\)

\begin{align*} \text{Let } a(k) &= k^{3} + 9k^{2} + 26k + 24 \\ a(-2) &= (-2)^{3} + 9(-2)^{2} + 26(-2) + 24 \\ &= -8 + 36 - 52 +24 \\ &= 0 \\ \therefore a(k) &= (k + 2)(k^{2} + 7k + 12 ) \\ &= (k + 2)(k+3)(k + 4) \\ \therefore 0 &= (k + 2)(k+3)(k + 4) \\ \therefore k = -2 & \text{ or } k = -3 \text{ or } k = -4 \end{align*}

\(x^{3} + 2x^{2} - 50 = 25x\)

\begin{align*} x^{3} + 2x^{2} - 50 &= 25x \\ x^{3} + 2x^{2} - 25x - 50 &= 0 \\ \text{Let } a(x) &= x^{3} + 2x^{2} - 25x - 50 \\ a(-2) &= (-2)^{3} + 2(-2)^{2} - 25(-2) - 50 \\ &= -8 + 8 + 50 -50 \\ &= 0 \\ \therefore a(x) &= (x + 2)(x^{2} - 25) \\ &= (x + 2)(x-5)(x + 5) \\ \therefore 0 &= (x + 2)(x-5)(x + 5) \\ \therefore x = -2 & \text{ or } x = 5 \text{ or } x = -5 \end{align*}

\(-p^{3} + 19p = 30\)

\begin{align*} -p^{3} + 19p -30 & = 0 \\ p^{3} - 19p + 30 & = 0 \\ \text{Let } a(p) &= p^{3} - 19p + 30 \\ a(3) &= (3)^{3} - 19(3) + 30 \\ &= 27 -57 + 30 \\ &= 0 \\ \therefore a(p) &= (p - 3)(p^{2} + 3p - 10) \\ &= (p-3)(p - 2)(p + 5) \\ \therefore 0 &= (p-3)(p - 2)(p + 5) \\ \therefore p = 3 & \text{ or } p = 2 \text{ or } p = -5 \end{align*}

\(6x^{2} - x^{3} = 5x + 12\)

\begin{align*} 0 = x^{3} - 6x^{2} + 5x + 12 \\ \text{Let } a(x) &= x^{3} - 6x^{2} + 5x + 12 \\ a(-1) &= (-1)^{3} - 6(-1)^{2} + 5(-1) + 12 \\ &= -1 -6 -5 + 12 \\ &= 0 \\ \therefore a(x) &= (x + 1)(x^{2} - 7x + 12) \\ &= (x + 1)(x-3)(x - 4) \\ \therefore 0 &= (x + 1)(x-3)(x - 4) \\ \therefore x = -1 & \text{ or } x = 3 \text{ or } x = 4 \end{align*}