Home Practice
For learners and parents For teachers and schools
Past papers Textbooks
Mathematics
Mathematics Grade 7 Mathematics Grade 8 Mathematics Grade 9 Mathematics Grade 10 Mathematics Grade 11 Mathematics Grade 12
Mathematical Literacy
Mathematical Literacy Grade 10
Physical Sciences
Physical Sciences Grade 10 Physical Sciences Grade 11 Physical Sciences Grade 12
Natural Sciences
Natural Sciences Grade 4 Natural Sciences Grade 5 Natural Sciences Grade 6 Natural Sciences Grade 7 Natural Sciences Grade 8 Natural Sciences Grade 9
Life Sciences
Life Sciences Grade 10
CAT
CAT Grade 10 CAT Grade 11 CAT Grade 12
IT
IT Grade 10 IT Grade 11 IT Grade 12
Full catalogue
Leaderboards
Learners Leaderboard Grades Leaderboard Schools Leaderboard
Campaigns
Headstart #MillionMaths
Learner opportunities Pricing Support
Help centre Contact us
Log in

We think you are located in South Africa. Is this correct?

End of chapter exercises

End of chapter exercises

Textbook Exercise 5.7

Solve for \(x\): \({x}^{3}+{x}^{2}-5x+3=0\)

\begin{align*} \text{Let } a(x) &= {x}^{3}+{x}^{2}-5x+3 \\ a(1) &= (1)^{3}+(1)^{2}-5(1)+3 \\ &= 0 \\ \therefore a(x) &= (x-1)(x^{2} + 2x - 3) \\ &= (x-1)(x+3)(x-1) \\ &= (x-1)^{2}(x+3) \\ \therefore 0 &= (x-1)^{2}(x+3) \\ \therefore x = 1 &\text{ or } x = -3 \end{align*}

Solve for \(y\): \({y}^{3} = 3{y}^{2} + 16y + 12\)

\begin{align*} \text{Let } a(y) &= {y}^{3}-3{y}^{2}-16y-12 \\ a(-1) &= (-1)^{3}-3(-1)^{2}-16(-1)-12 \\ &= -1-3+16-12 \\ &= 0 \\ \therefore a(y) &= (y +1)(y^{2} -4y -12) \\ &= (y+1)(y-6)(y+2) \\ \therefore 0 &= (y+1)(y-6)(y+2) \\ \therefore y = -1 &\text{ or } y=6 \text{ or } y =-2 \end{align*}

Solve for \(m\): \(m({m}^{2}-m-4) = - 4\)

\begin{align*} \text{Let } a(m) &= {m}^{3}-{m}^{2}-4m+4 \\ a(1) &= (1)^{3}-(1)^{2}-4(1)+4 \\ &= 1 - 1 - 4 +4 \\ &= 0 \\ \therefore a(m) &= (m-1)(m^{2} - 4) \\ &= (m-1)(m+2)(m-2) \\ \therefore 0 &= (m-1)(m+2)(m-2) \\ \therefore m = 1 &\text{ or } m=2 \text{ or } m =-2 \end{align*}

Solve for \(x\): \({x}^{3}-{x}^{2}=3\left(3x+2\right)\)

\begin{align*} {x}^{3}-{x}^{2} &= 3\left(3x+2\right) \\ {x}^{3}-{x}^{2} &= 9x + 6 \\ {x}^{3}-{x}^{2} -9x - 6 &= 0 \\ \text{Let } x =-2: \quad (-2)^{3}-(-2)^{2} -9(-2) - 6 \\ &= -8 -4 +18 - 6 \\ &= 0 \\ \therefore (x + 2) & \text{ is a factor} \\ (x + 2)(x^{2} - 3x -3) &= 0 \\ \text{Using quadratic formula to solve for } & x: x^{2} - 3x - 3 = 0 \\ a = 1; \quad b &= -3; \quad c=-3 \\ x &= \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \\ &= \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(1)(-3)}}{2(1)} \\ &= \frac{3 \pm \sqrt{9 + 12}}{2} \\ &= \frac{3 \pm \sqrt{21}}{2} \\ \therefore x = -2 &\text{ or } x =\frac{3 + \sqrt{21}}{2} \text{ or } x =\frac{3 - \sqrt{21}}{2} \end{align*}

Solve for \(x\) if \(2{x}^{3}-3{x}^{2}-8x=3\).

\begin{align*} 2{x}^{3}-3{x}^{2}-8x &= 3 \\ 2{x}^{3}-3{x}^{2}-8x -3 &= 0 \\ \text{Let } a(x) &= 2{x}^{3}-3{x}^{2}-8x -3 \\ a(-1) &= 2(-1)^{3}-3(-1)^{2}-8(-1) -3 \\ &= -2 -3 + 8 -3 \\ &= 0 \\ \therefore a(x) &= (x + 1)(2x^{2} -5x -3) \\ &= (x + 1)(2x + 1)(x - 3) \\ \therefore 0 &= (x + 1)(2x + 1)(x - 3) \\ \therefore x = -1 &\text{ or } x = - \frac{1}{2} \text{ or } x= 3 \end{align*}

Solve for \(x\): \(16\left(x+1\right)={x}^{2}\left(x+1\right)\)

\begin{align*} 16\left(x+1\right) &= {x}^{2}\left(x+1\right) \\ 16x + 16 &= {x}^{3} + {x}^{2} \\ 0 &= {x}^{3} + {x}^{2} - 16x - 16 \\ \text{Let } a(x) &= {x}^{3} + {x}^{2} - 16x - 16 \\ a(-1) &= (-1)^{3} + (-1)^{2} - 16(-1) - 16 \\ &= -1 + 1 +16 -16 \\ &= 0 \\ \therefore a(x) &= (x + 1)(x^{2} - 16) \\ &= (x + 1)(x - 4)(x +4) \\ \therefore 0 &= (x + 1)(x - 4)(x +4) \\ \therefore x = -1 &\text{ or } x = 4 \text{ or } x= -4 \end{align*}

Show that \(x-2\) is a factor of \(3{x}^{3}-11{x}^{2}+12x-4\).

\begin{align*} \text{Let } a(x) &= 3{x}^{3}-11{x}^{2}+12x-4 \\ a(2) &= 3(2)^{3}-11(2)^{2}+12(2)-4 \\ &= 24 - 44 +24 - 4 \\ &= 0 \\ \therefore (x-2) &\text{ is a factor of } a(x) \end{align*}

Hence, by factorising completely, solve the equation:

\(3{x}^{3}-11{x}^{2}+12x-4=0\)
\begin{align*} 3{x}^{3}-11{x}^{2}+12x-4 &= 0 \\ (x -2)(3x^{2} - 5x + 2) &= 0 \\ \therefore (x - 2)(3x - 2)(x - 1) &= 0 \\ \therefore x = 2 &\text{ or } x = \frac{2}{3} \text{ or } x = 1 \end{align*}

\(2{x}^{3}-{x}^{2}-2x+2=Q\left(x\right).\left(2x-1\right)+R\) for all values of \(x\). What is the value of \(R\)?

\begin{align*} \text{Let } a(x) &= 2{x}^{3}-{x}^{2}-2x+2 \\ R = a \left( \frac{1}{2} \right) &= 2\left( \frac{1}{2} \right)^{3}-\left( \frac{1}{2} \right)^{2}-2\left( \frac{1}{2} \right) + 2 \\ &= 2 \left( \frac{1}{8} \right) - \left( \frac{1}{4} \right) - 1 + 2 \\ &= \frac{1}{4} - \frac{1}{4} +1 \\ &= 1 \\ \therefore R &= 1 \end{align*}

Use the factor theorem to solve the following equation for \(m\):

\(8{m}^{3}+7{m}^{2}-17m+2=0\)
\begin{align*} \text{Let } a(m) &= 8{m}^{3}+7{m}^{2}-17m+2 \\ a(1) &= 8(1)^{3}+7(1)^{2}-17(1)+2 \\ &= 8 + 7 -17 + 2 \\ &= 0 \\ \therefore a(m) &= (m - 1)(8m^{2} + 15m - 2) \\ &= (m - 1)(8m - 1)(m + 2) \\ \therefore 0 &= (m - 1)(8m - 1)(m + 2) \\ \therefore m = 1 &\text{ or } m = \frac{1}{8} \text{ or } m = -2 \end{align*}

Hence, or otherwise, solve for \(x\):

\({2}^{3x+3}+7.{2}^{2x}+2=17.{2}^{x}\)
\begin{align*} {2}^{3x+3}+7 \cdot {2}^{2x}+2 &= 17 \cdot {2}^{x} \\ {2}^{3x} \cdot 2^{3} +7 \cdot {2}^{2x}+2 &= 17 \cdot {2}^{x} \\ 8 \cdot \left( {2}^{x} \right)^{3} +7 \cdot \left( {2}^{x} \right)^{2} - 17 \cdot {2}^{x} + 2 &= 0 \\ \text{which we can compare with } a(m) &= 8{m}^{3}+7{m}^{2}-17m+2 \\ \text{Let } 2^{x} &= m \\ \text{ and from part (a) we know that } m = 1 &\text{ or } m = \frac{1}{8} \text{ or } m = -2 \\ \text{So } 2^{x} &= 1 \\ 2^{x} &= 2^{0} \\ \therefore x &= 0 \\ \text{Or } 2^{x} &= \frac{1}{8} \\ 2^{x} &= 2^{-3} \\ \therefore x &= -3 \\ \text{Or } 2^{x} &= -2 \\ \therefore & \text{ no solution} \end{align*}

Find the value of \(R\) if \(x-1\) is a factor of \(h(x)= (x - 6) \cdot Q(x) + R\) and \(Q(x)\) divided by \(x-1\) gives a remainder of \(\text{8}\).

\begin{align*} h(x) &= (x - 6) \cdot Q(x) + R \\ h(1) &= (1 - 6) \cdot Q(1) + R \\ \therefore 0 &= -5 \cdot Q(1) + R \\ \text{And } Q(1) &= 8 \\ 0 &= -5(8) + R \\ \therefore R &= 40 \end{align*}

Determine the values of \(p\) for which the function

\[f\left(x\right)=3{p}^{3}-\left(3p-7\right){x}^{2}+5x-3\]

leaves a remainder of \(\text{9}\) when it is divided by \(\left(x-p\right)\).

\begin{align*} f\left(x\right) &= 3{p}^{3}-\left(3p-7\right){x}^{2}+5x-3 \\ \therefore f(p) &= 3{p}^{3}-\left(3p-7\right){p}^{2}+5p-3 \\ &= 3{p}^{3}- 3p^{3} + 7p^{2} + 5p - 3 \\ &= 7p^{2} + 5p - 3 \\ f(p) &= 9 \\ \therefore 9 &= 7p^{2} + 5p - 3 \\ 0 &= 7p^{2} + 5p - 12 \\ 0 &= (7p + 12)(p - 1) \\ \therefore p = -\frac{12}{7} &\text{ or } p = 1 \end{align*}

Alternative (long) method:

We first take out the factor using long division: \begin{align*} &\qquad \quad \underline{(7-3p)x + (5 + 7p -3p^{2})} \\ &(x-p) | (7-3p)x^{2} + 5x + (3p^{3} - 3)\\ &\quad \quad - \underline{\lbrace (7-3p)x^{2} - p(7-3p)x \rbrace} \\ &\qquad \qquad \qquad \qquad 0 + 5x + p(7-3p)x + (3p^{3}-3)\\ &\qquad \qquad \qquad \qquad \qquad 5x + 7px -3p^{2}x + 3p^{3}x \\ &\qquad \qquad \qquad \qquad \qquad [5 + 7p -3p^{2}]x + 3p^{3} - 3 \\ &\qquad \qquad \qquad \qquad \quad - \underline{\lbrace [5 + 7p -3p^{2}]x -p(5 + 7p - 3p^{2}) \rbrace}\\ &\qquad \qquad \qquad \qquad \qquad 0 + 3p^{3} - 3 + 5p + 7p^{2} -3p^{3} \end{align*}

We take the remainder and set it equal to 9: \begin{align*} -3 + 5p + 7p^{2} & = 9 \\ 7p^{2} + 5p - 12 & = 0\\ (7p+12)(p-1) & = 0\\ \therefore p = -\frac{12}{7} & \text{ or } p = 1 \end{align*}

Calculate \(t\) and \(Q(x)\) if \(x^{2} + tx + 3 = (x + 4) \cdot Q(x) - 17\).

\begin{align*} x^{2} + tx + 20 &= (x + 4) \cdot Q(x) \\ \text{Let } f(x) &= x^{2} + tx + 20 \\ f(-4) &= (-4)^{2} + t(-4) + 20 \\ 0 &= 16 -4t + 20 \\ 4t &= 36 \\ \therefore t &= 9 \\ & \\ x^{2} + 9x + 20 &= (x + 4) \cdot Q(x) \\ (x + 4)(x + 5)&= (x + 4) \cdot Q(x) \\ \therefore Q(x) &= x + 5 \end{align*}