We think you are located in South Africa. Is this correct?

Summary

Do you need more Practice?

Siyavula Practice gives you access to unlimited questions with answers that help you learn. Practise anywhere, anytime, and on any device!

Sign up to practise now

5.8 Summary (EMBHF)

  • Parabolic functions:

    Standard form: \(y = ax^2 + bx + c\)

    • \(y\)-intercept: \((0;c)\)
    • \(x\)-intercept: \(x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\)
    • Turning point: \(\left(-\frac{b}{2a}; -\frac{b^2}{4a}+c\right)\)
    • Axis of symmetry: \(x = -\frac{b}{2a}\)

    Completed square form: \(y = a(x+p)^2 + q\)

    • Turning point: \((-p;q)\)
    • \(p > 0\): horizontal shift left
    • \(p < 0\): horizontal shift right
    • \(q > 0\): vertical shift up
    • \(q < 0\): vertical shift down
  • Average gradient:

    • Average gradient \(= \frac{y_2 - y_1}{x_2 - x_1}\)
  • Hyperbolic functions:

    Standard form: \(y = \frac{k}{x}\)

    • \(k > 0\): first and third quadrant
    • \(k < 0\): second and fourth quadrant

    Shifted form: \(y = \frac{k}{x+p} + q\)

    • \(p > 0\): horizontal shift left
    • \(p < 0\): horizontal shift right
    • \(q > 0\): vertical shift up
    • \(q < 0\): vertical shift down
    • Asymptotes: \(x = -p\) and \(y = q\)
  • Exponential functions:

    Standard form: \(y = ab^x\)

    • \(a > 0\): above \(x\)-axis
    • \(a < 0\): below \(x\)-axis
    • \(b > 1\): increasing function if \(a > 0\); decreasing function if \(a < 0\)
    • \(0 < b < 1\): decreasing function if \(a > 0\); increasing function if \(a < 0\)

    Shifted form: \(y = ab^{(x +p)} + q\)

    • \(p > 0\): horizontal shift left
    • \(p < 0\): horizontal shift right
    • \(q > 0\): vertical shift up
    • \(q < 0\): vertical shift down
    • Asymptotes: \(y = q\)
  • Sine functions:

    Shifted form: \(y = a \sin (k \theta + p) + q\)

    • Period \(= \frac{\text{360}\text{°}}{|k|}\)
    • \(k > 1\) or \(k < -1\): period decreases
    • \(0 <k <1\) or \(-1 <k <0\): period increases
    • \(p > 0\): horizontal shift left
    • \(p < 0\): horizontal shift right
    • \(q > 0\): vertical shift up
    • \(q < 0\): vertical shift down
    • \(\sin (-\theta) = - \sin \theta\)
  • Cosine functions:

    Shifted form: \(y = a \cos (k \theta + p) + q\)

    • Period \(= \frac{\text{360}\text{°}}{|k|}\)
    • \(k > 1\) or \(k < -1\): period decreases
    • \(0 <k <1\) or \(-1 <k <0\): period increases
    • \(p > 0\): horizontal shift left
    • \(p < 0\): horizontal shift right
    • \(q > 0\): vertical shift up
    • \(q < 0\): vertical shift down
    • \(\cos (-\theta) = \cos \theta\)
  • Tangent functions:

    Shifted form: \(y = a \tan (k \theta + p) + q\)

    • Period \(= \frac{\text{180}\text{°}}{|k|}\)
    • \(k > 1\) or \(k < -1\): period decreases
    • \(0 <k <1\) or \(-1 <k <0\): period increases
    • \(p > 0\): horizontal shift left
    • \(p < 0\): horizontal shift right
    • \(q > 0\): vertical shift up
    • \(q < 0\): vertical shift down
    • \(\tan (-\theta) = - \tan \theta\)
    • Asymptotes: \(\frac{\text{90}\text{°}-p}{k} \pm \frac{\text{180}\text{°} n}{k}\), \(n \in \mathbb{Z}\)